Whakaoti mō x
x=\frac{\sqrt{66}}{2}-4\approx 0.062019202
x=-\frac{\sqrt{66}}{2}-4\approx -8.062019202
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+16x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-16±\sqrt{16^{2}-4\times 2\left(-1\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 16 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 2\left(-1\right)}}{2\times 2}
Pūrua 16.
x=\frac{-16±\sqrt{256-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-16±\sqrt{256+8}}{2\times 2}
Whakareatia -8 ki te -1.
x=\frac{-16±\sqrt{264}}{2\times 2}
Tāpiri 256 ki te 8.
x=\frac{-16±2\sqrt{66}}{2\times 2}
Tuhia te pūtakerua o te 264.
x=\frac{-16±2\sqrt{66}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{66}-16}{4}
Nā, me whakaoti te whārite x=\frac{-16±2\sqrt{66}}{4} ina he tāpiri te ±. Tāpiri -16 ki te 2\sqrt{66}.
x=\frac{\sqrt{66}}{2}-4
Whakawehe -16+2\sqrt{66} ki te 4.
x=\frac{-2\sqrt{66}-16}{4}
Nā, me whakaoti te whārite x=\frac{-16±2\sqrt{66}}{4} ina he tango te ±. Tango 2\sqrt{66} mai i -16.
x=-\frac{\sqrt{66}}{2}-4
Whakawehe -16-2\sqrt{66} ki te 4.
x=\frac{\sqrt{66}}{2}-4 x=-\frac{\sqrt{66}}{2}-4
Kua oti te whārite te whakatau.
2x^{2}+16x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+16x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
2x^{2}+16x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
2x^{2}+16x=1
Tango -1 mai i 0.
\frac{2x^{2}+16x}{2}=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{16}{2}x=\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+8x=\frac{1}{2}
Whakawehe 16 ki te 2.
x^{2}+8x+4^{2}=\frac{1}{2}+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=\frac{1}{2}+16
Pūrua 4.
x^{2}+8x+16=\frac{33}{2}
Tāpiri \frac{1}{2} ki te 16.
\left(x+4\right)^{2}=\frac{33}{2}
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{\frac{33}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=\frac{\sqrt{66}}{2} x+4=-\frac{\sqrt{66}}{2}
Whakarūnātia.
x=\frac{\sqrt{66}}{2}-4 x=-\frac{\sqrt{66}}{2}-4
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}