Whakaoti mō x
x=-8
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=13 ab=2\left(-24\right)=-48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,48 -2,24 -3,16 -4,12 -6,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Tātaihia te tapeke mō ia takirua.
a=-3 b=16
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(2x^{2}-3x\right)+\left(16x-24\right)
Tuhia anō te 2x^{2}+13x-24 hei \left(2x^{2}-3x\right)+\left(16x-24\right).
x\left(2x-3\right)+8\left(2x-3\right)
Tauwehea te x i te tuatahi me te 8 i te rōpū tuarua.
\left(2x-3\right)\left(x+8\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{2} x=-8
Hei kimi otinga whārite, me whakaoti te 2x-3=0 me te x+8=0.
2x^{2}+13x-24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-13±\sqrt{13^{2}-4\times 2\left(-24\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 13 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 2\left(-24\right)}}{2\times 2}
Pūrua 13.
x=\frac{-13±\sqrt{169-8\left(-24\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-13±\sqrt{169+192}}{2\times 2}
Whakareatia -8 ki te -24.
x=\frac{-13±\sqrt{361}}{2\times 2}
Tāpiri 169 ki te 192.
x=\frac{-13±19}{2\times 2}
Tuhia te pūtakerua o te 361.
x=\frac{-13±19}{4}
Whakareatia 2 ki te 2.
x=\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{-13±19}{4} ina he tāpiri te ±. Tāpiri -13 ki te 19.
x=\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{32}{4}
Nā, me whakaoti te whārite x=\frac{-13±19}{4} ina he tango te ±. Tango 19 mai i -13.
x=-8
Whakawehe -32 ki te 4.
x=\frac{3}{2} x=-8
Kua oti te whārite te whakatau.
2x^{2}+13x-24=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+13x-24-\left(-24\right)=-\left(-24\right)
Me tāpiri 24 ki ngā taha e rua o te whārite.
2x^{2}+13x=-\left(-24\right)
Mā te tango i te -24 i a ia ake anō ka toe ko te 0.
2x^{2}+13x=24
Tango -24 mai i 0.
\frac{2x^{2}+13x}{2}=\frac{24}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{13}{2}x=\frac{24}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{13}{2}x=12
Whakawehe 24 ki te 2.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=12+\left(\frac{13}{4}\right)^{2}
Whakawehea te \frac{13}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{4}. Nā, tāpiria te pūrua o te \frac{13}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{13}{2}x+\frac{169}{16}=12+\frac{169}{16}
Pūruatia \frac{13}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{361}{16}
Tāpiri 12 ki te \frac{169}{16}.
\left(x+\frac{13}{4}\right)^{2}=\frac{361}{16}
Tauwehea x^{2}+\frac{13}{2}x+\frac{169}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{13}{4}=\frac{19}{4} x+\frac{13}{4}=-\frac{19}{4}
Whakarūnātia.
x=\frac{3}{2} x=-8
Me tango \frac{13}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}