Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-10}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=-5
Whakawehea te -10 ki te 2, kia riro ko -5.
x=\sqrt{5}i x=-\sqrt{5}i
Kua oti te whārite te whakatau.
2x^{2}+10=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 10}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 10}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\times 10}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{-80}}{2\times 2}
Whakareatia -8 ki te 10.
x=\frac{0±4\sqrt{5}i}{2\times 2}
Tuhia te pūtakerua o te -80.
x=\frac{0±4\sqrt{5}i}{4}
Whakareatia 2 ki te 2.
x=\sqrt{5}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{5}i}{4} ina he tāpiri te ±.
x=-\sqrt{5}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{5}i}{4} ina he tango te ±.
x=\sqrt{5}i x=-\sqrt{5}i
Kua oti te whārite te whakatau.