Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+x^{2}=180
Tātaihia te -x mā te pū o 2, kia riro ko x^{2}.
3x^{2}=180
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
x^{2}=\frac{180}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=60
Whakawehea te 180 ki te 3, kia riro ko 60.
x=2\sqrt{15} x=-2\sqrt{15}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2x^{2}+x^{2}=180
Tātaihia te -x mā te pū o 2, kia riro ko x^{2}.
3x^{2}=180
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}-180=0
Tangohia te 180 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-180\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-180\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-180\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{2160}}{2\times 3}
Whakareatia -12 ki te -180.
x=\frac{0±12\sqrt{15}}{2\times 3}
Tuhia te pūtakerua o te 2160.
x=\frac{0±12\sqrt{15}}{6}
Whakareatia 2 ki te 3.
x=2\sqrt{15}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{15}}{6} ina he tāpiri te ±.
x=-2\sqrt{15}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{15}}{6} ina he tango te ±.
x=2\sqrt{15} x=-2\sqrt{15}
Kua oti te whārite te whakatau.