Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

w^{2}-9=0
Whakawehea ngā taha e rua ki te 2.
\left(w-3\right)\left(w+3\right)=0
Whakaarohia te w^{2}-9. Tuhia anō te w^{2}-9 hei w^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
w=3 w=-3
Hei kimi otinga whārite, me whakaoti te w-3=0 me te w+3=0.
2w^{2}=18
Me tāpiri te 18 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
w^{2}=\frac{18}{2}
Whakawehea ngā taha e rua ki te 2.
w^{2}=9
Whakawehea te 18 ki te 2, kia riro ko 9.
w=3 w=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2w^{2}-18=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
w=\frac{0±\sqrt{0^{2}-4\times 2\left(-18\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\times 2\left(-18\right)}}{2\times 2}
Pūrua 0.
w=\frac{0±\sqrt{-8\left(-18\right)}}{2\times 2}
Whakareatia -4 ki te 2.
w=\frac{0±\sqrt{144}}{2\times 2}
Whakareatia -8 ki te -18.
w=\frac{0±12}{2\times 2}
Tuhia te pūtakerua o te 144.
w=\frac{0±12}{4}
Whakareatia 2 ki te 2.
w=3
Nā, me whakaoti te whārite w=\frac{0±12}{4} ina he tāpiri te ±. Whakawehe 12 ki te 4.
w=-3
Nā, me whakaoti te whārite w=\frac{0±12}{4} ina he tango te ±. Whakawehe -12 ki te 4.
w=3 w=-3
Kua oti te whārite te whakatau.