Aromātai
0
Tauwehe
0
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
2 { -2 }^{ 4 } +11 { -2 }^{ 3 } +15 { -2 }^{ 2 } -8(-2)-20
Tohaina
Kua tāruatia ki te papatopenga
2\times 16+11\left(-2\right)^{3}+15\left(-2\right)^{2}-8\left(-2\right)-20
Tātaihia te -2 mā te pū o 4, kia riro ko 16.
32+11\left(-2\right)^{3}+15\left(-2\right)^{2}-8\left(-2\right)-20
Whakareatia te 2 ki te 16, ka 32.
32+11\left(-8\right)+15\left(-2\right)^{2}-8\left(-2\right)-20
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
32-88+15\left(-2\right)^{2}-8\left(-2\right)-20
Whakareatia te 11 ki te -8, ka -88.
-56+15\left(-2\right)^{2}-8\left(-2\right)-20
Tangohia te 88 i te 32, ka -56.
-56+15\times 4-8\left(-2\right)-20
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
-56+60-8\left(-2\right)-20
Whakareatia te 15 ki te 4, ka 60.
4-8\left(-2\right)-20
Tāpirihia te -56 ki te 60, ka 4.
4-\left(-16\right)-20
Whakareatia te 8 ki te -2, ka -16.
4+16-20
Ko te tauaro o -16 ko 16.
20-20
Tāpirihia te 4 ki te 16, ka 20.
0
Tangohia te 20 i te 20, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}