Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(\left(-\sqrt{2}\right)^{2}-2\left(-\sqrt{2}\right)+1\right)-2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-\sqrt{2}-1\right)^{2}.
2\left(\left(\sqrt{2}\right)^{2}-2\left(-\sqrt{2}\right)+1\right)-2
Tātaihia te -\sqrt{2} mā te pū o 2, kia riro ko \left(\sqrt{2}\right)^{2}.
2\left(\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1\right)-2
Whakareatia te -2 ki te -1, ka 2.
2\left(\sqrt{2}\right)^{2}+4\sqrt{2}+2-2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \left(\sqrt{2}\right)^{2}+2\sqrt{2}+1.
2\times 2+4\sqrt{2}+2-2
Ko te pūrua o \sqrt{2} ko 2.
4+4\sqrt{2}+2-2
Whakareatia te 2 ki te 2, ka 4.
6+4\sqrt{2}-2
Tāpirihia te 4 ki te 2, ka 6.
4+4\sqrt{2}
Tangohia te 2 i te 6, ka 4.
2\left(\left(-\sqrt{2}\right)^{2}-2\left(-\sqrt{2}\right)+1\right)-2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-\sqrt{2}-1\right)^{2}.
2\left(\left(\sqrt{2}\right)^{2}-2\left(-\sqrt{2}\right)+1\right)-2
Tātaihia te -\sqrt{2} mā te pū o 2, kia riro ko \left(\sqrt{2}\right)^{2}.
2\left(\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1\right)-2
Whakareatia te -2 ki te -1, ka 2.
2\left(\sqrt{2}\right)^{2}+4\sqrt{2}+2-2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \left(\sqrt{2}\right)^{2}+2\sqrt{2}+1.
2\times 2+4\sqrt{2}+2-2
Ko te pūrua o \sqrt{2} ko 2.
4+4\sqrt{2}+2-2
Whakareatia te 2 ki te 2, ka 4.
6+4\sqrt{2}-2
Tāpirihia te 4 ki te 2, ka 6.
4+4\sqrt{2}
Tangohia te 2 i te 6, ka 4.