Whakaoti mō n
n=5
Tohaina
Kua tāruatia ki te papatopenga
180+\left(n-2\right)\times 120=\left(2n-4\right)\times 90
Whakareatia te 2 ki te 90, ka 180.
180+120n-240=\left(2n-4\right)\times 90
Whakamahia te āhuatanga tohatoha hei whakarea te n-2 ki te 120.
-60+120n=\left(2n-4\right)\times 90
Tangohia te 240 i te 180, ka -60.
-60+120n=180n-360
Whakamahia te āhuatanga tohatoha hei whakarea te 2n-4 ki te 90.
-60+120n-180n=-360
Tangohia te 180n mai i ngā taha e rua.
-60-60n=-360
Pahekotia te 120n me -180n, ka -60n.
-60n=-360+60
Me tāpiri te 60 ki ngā taha e rua.
-60n=-300
Tāpirihia te -360 ki te 60, ka -300.
n=\frac{-300}{-60}
Whakawehea ngā taha e rua ki te -60.
n=5
Whakawehea te -300 ki te -60, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}