2 \times ( ( 4 \times 2 ^ { 2 } - \frac { 1 } { 5 } \times 2 ^ { 5 } ) - ( 4 \times 0 ^ { 2 } - \frac { 1 } { 5 } \times 0 ^ { 2 } ) ) - \frac { ? } { 5 } =
Aromātai
19
Tauwehe
19
Tohaina
Kua tāruatia ki te papatopenga
2\left(4\times 4-\frac{1}{5}\times 2^{5}-\left(4\times 0^{2}-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
2\left(16-\frac{1}{5}\times 2^{5}-\left(4\times 0^{2}-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Whakareatia te 4 ki te 4, ka 16.
2\left(16-\frac{1}{5}\times 32-\left(4\times 0^{2}-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Tātaihia te 2 mā te pū o 5, kia riro ko 32.
2\left(16-\frac{32}{5}-\left(4\times 0^{2}-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Whakareatia te \frac{1}{5} ki te 32, ka \frac{32}{5}.
2\left(\frac{80}{5}-\frac{32}{5}-\left(4\times 0^{2}-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Me tahuri te 16 ki te hautau \frac{80}{5}.
2\left(\frac{80-32}{5}-\left(4\times 0^{2}-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Tā te mea he rite te tauraro o \frac{80}{5} me \frac{32}{5}, me tango rāua mā te tango i ō raua taurunga.
2\left(\frac{48}{5}-\left(4\times 0^{2}-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Tangohia te 32 i te 80, ka 48.
2\left(\frac{48}{5}-\left(4\times 0-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
2\left(\frac{48}{5}-\left(0-\frac{1}{5}\times 0^{2}\right)\right)-\frac{1}{5}
Whakareatia te 4 ki te 0, ka 0.
2\left(\frac{48}{5}-\left(0-\frac{1}{5}\times 0\right)\right)-\frac{1}{5}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
2\left(\frac{48}{5}-\left(0-0\right)\right)-\frac{1}{5}
Whakareatia te \frac{1}{5} ki te 0, ka 0.
2\left(\frac{48}{5}-0\right)-\frac{1}{5}
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
2\times \frac{48}{5}-\frac{1}{5}
Tangohia te 0 i te \frac{48}{5}, ka \frac{48}{5}.
\frac{2\times 48}{5}-\frac{1}{5}
Tuhia te 2\times \frac{48}{5} hei hautanga kotahi.
\frac{96}{5}-\frac{1}{5}
Whakareatia te 2 ki te 48, ka 96.
\frac{96-1}{5}
Tā te mea he rite te tauraro o \frac{96}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{95}{5}
Tangohia te 1 i te 96, ka 95.
19
Whakawehea te 95 ki te 5, kia riro ko 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}