Whakaoti mō x
x = \frac{561}{2} = 280\frac{1}{2} = 280.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
12+2x+6+x+x=1140
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6+x.
18+2x+x+x=1140
Tāpirihia te 12 ki te 6, ka 18.
18+3x+x=1140
Pahekotia te 2x me x, ka 3x.
18+4x=1140
Pahekotia te 3x me x, ka 4x.
4x=1140-18
Tangohia te 18 mai i ngā taha e rua.
4x=1122
Tangohia te 18 i te 1140, ka 1122.
x=\frac{1122}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{561}{2}
Whakahekea te hautanga \frac{1122}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}