Aromātai
6\sqrt{47}\approx 41.133927602
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{47}\left(6+2\sqrt{3}+3\sqrt{2}-\sqrt{9}-\sqrt{12}-\sqrt{18}\right)
Tangohia te 2 i te 49, ka 47.
2\sqrt{47}\left(6+2\sqrt{3}+3\sqrt{2}-3-\sqrt{12}-\sqrt{18}\right)
Tātaitia te pūtakerua o 9 kia tae ki 3.
2\sqrt{47}\left(3+2\sqrt{3}+3\sqrt{2}-\sqrt{12}-\sqrt{18}\right)
Tangohia te 3 i te 6, ka 3.
2\sqrt{47}\left(3+2\sqrt{3}+3\sqrt{2}-2\sqrt{3}-\sqrt{18}\right)
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{47}\left(3+3\sqrt{2}-\sqrt{18}\right)
Pahekotia te 2\sqrt{3} me -2\sqrt{3}, ka 0.
2\sqrt{47}\left(3+3\sqrt{2}-3\sqrt{2}\right)
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
2\sqrt{47}\times 3
Pahekotia te 3\sqrt{2} me -3\sqrt{2}, ka 0.
6\sqrt{47}
Whakareatia te 2 ki te 3, ka 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}