Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{47}\left(6+2\sqrt{3}+3\sqrt{2}-\sqrt{9}-\sqrt{12}-\sqrt{18}\right)
Tangohia te 2 i te 49, ka 47.
2\sqrt{47}\left(6+2\sqrt{3}+3\sqrt{2}-3-\sqrt{12}-\sqrt{18}\right)
Tātaitia te pūtakerua o 9 kia tae ki 3.
2\sqrt{47}\left(3+2\sqrt{3}+3\sqrt{2}-\sqrt{12}-\sqrt{18}\right)
Tangohia te 3 i te 6, ka 3.
2\sqrt{47}\left(3+2\sqrt{3}+3\sqrt{2}-2\sqrt{3}-\sqrt{18}\right)
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{47}\left(3+3\sqrt{2}-\sqrt{18}\right)
Pahekotia te 2\sqrt{3} me -2\sqrt{3}, ka 0.
2\sqrt{47}\left(3+3\sqrt{2}-3\sqrt{2}\right)
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
2\sqrt{47}\times 3
Pahekotia te 3\sqrt{2} me -3\sqrt{2}, ka 0.
6\sqrt{47}
Whakareatia te 2 ki te 3, ka 6.