Aromātai
2
Tohaina
Kua tāruatia ki te papatopenga
2\times 1^{2}+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
Tīkina te uara \tan(45) mai i te ripanga uara pākoki.
2\times 1+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
2+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
Whakareatia te 2 ki te 1, ka 2.
2+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\sin(60)\right)^{2}
Tīkina te uara \cos(30) mai i te ripanga uara pākoki.
2+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
Kia whakarewa i te \frac{\sqrt{3}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{2\times 2^{2}}{2^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{2^{2}}{2^{2}}.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
Tā te mea he rite te tauraro o \frac{2\times 2^{2}}{2^{2}} me \frac{\left(\sqrt{3}\right)^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\frac{\sqrt{3}}{2}\right)^{2}
Tīkina te uara \sin(60) mai i te ripanga uara pākoki.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{3}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{2^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{4}-\frac{3}{4}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakarohaina te 2^{2}.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}-3}{4}
Tā te mea he rite te tauraro o \frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{2^{3}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{8+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{8+3}{2^{2}}-\frac{3}{4}
Ko te pūrua o \sqrt{3} ko 3.
\frac{11}{2^{2}}-\frac{3}{4}
Tāpirihia te 8 ki te 3, ka 11.
\frac{11}{4}-\frac{3}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
2
Tangohia te \frac{3}{4} i te \frac{11}{4}, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}