Aromātai
\sqrt{2}\left(\sqrt{6}+7\right)\approx 13.363596552
Tohaina
Kua tāruatia ki te papatopenga
2\times 4\sqrt{3}-18\sqrt{\frac{1}{3}}+3\sqrt{18}-8\sqrt{\frac{1}{8}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
8\sqrt{3}-18\sqrt{\frac{1}{3}}+3\sqrt{18}-8\sqrt{\frac{1}{8}}
Whakareatia te 2 ki te 4, ka 8.
8\sqrt{3}-18\times \frac{\sqrt{1}}{\sqrt{3}}+3\sqrt{18}-8\sqrt{\frac{1}{8}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
8\sqrt{3}-18\times \frac{1}{\sqrt{3}}+3\sqrt{18}-8\sqrt{\frac{1}{8}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
8\sqrt{3}-18\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+3\sqrt{18}-8\sqrt{\frac{1}{8}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
8\sqrt{3}-18\times \frac{\sqrt{3}}{3}+3\sqrt{18}-8\sqrt{\frac{1}{8}}
Ko te pūrua o \sqrt{3} ko 3.
8\sqrt{3}-6\sqrt{3}+3\sqrt{18}-8\sqrt{\frac{1}{8}}
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 18 me te 3.
2\sqrt{3}+3\sqrt{18}-8\sqrt{\frac{1}{8}}
Pahekotia te 8\sqrt{3} me -6\sqrt{3}, ka 2\sqrt{3}.
2\sqrt{3}+3\times 3\sqrt{2}-8\sqrt{\frac{1}{8}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
2\sqrt{3}+9\sqrt{2}-8\sqrt{\frac{1}{8}}
Whakareatia te 3 ki te 3, ka 9.
2\sqrt{3}+9\sqrt{2}-8\times \frac{\sqrt{1}}{\sqrt{8}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{8}}.
2\sqrt{3}+9\sqrt{2}-8\times \frac{1}{\sqrt{8}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
2\sqrt{3}+9\sqrt{2}-8\times \frac{1}{2\sqrt{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{3}+9\sqrt{2}-8\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
2\sqrt{3}+9\sqrt{2}-8\times \frac{\sqrt{2}}{2\times 2}
Ko te pūrua o \sqrt{2} ko 2.
2\sqrt{3}+9\sqrt{2}-8\times \frac{\sqrt{2}}{4}
Whakareatia te 2 ki te 2, ka 4.
2\sqrt{3}+9\sqrt{2}-2\sqrt{2}
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 8 me te 4.
2\sqrt{3}+7\sqrt{2}
Pahekotia te 9\sqrt{2} me -2\sqrt{2}, ka 7\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}