Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{2\sqrt{3}}{\frac{\sqrt{7}}{\sqrt{3}}}\sqrt{\frac{7}{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{7}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{7}}{\sqrt{3}}.
\frac{2\sqrt{3}}{\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\sqrt{\frac{7}{5}}
Whakangāwaritia te tauraro o \frac{\sqrt{7}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{3}}{\frac{\sqrt{7}\sqrt{3}}{3}}\sqrt{\frac{7}{5}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{3}}{\frac{\sqrt{21}}{3}}\sqrt{\frac{7}{5}}
Hei whakarea \sqrt{7} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{3}\times 3}{\sqrt{21}}\sqrt{\frac{7}{5}}
Whakawehe 2\sqrt{3} ki te \frac{\sqrt{21}}{3} mā te whakarea 2\sqrt{3} ki te tau huripoki o \frac{\sqrt{21}}{3}.
\frac{2\sqrt{3}\times 3\sqrt{21}}{\left(\sqrt{21}\right)^{2}}\sqrt{\frac{7}{5}}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}\times 3}{\sqrt{21}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{21}.
\frac{2\sqrt{3}\times 3\sqrt{21}}{21}\sqrt{\frac{7}{5}}
Ko te pūrua o \sqrt{21} ko 21.
\frac{6\sqrt{3}\sqrt{21}}{21}\sqrt{\frac{7}{5}}
Whakareatia te 2 ki te 3, ka 6.
\frac{6\sqrt{3}\sqrt{3}\sqrt{7}}{21}\sqrt{\frac{7}{5}}
Tauwehea te 21=3\times 7. Tuhia anō te pūtake rua o te hua \sqrt{3\times 7} hei hua o ngā pūtake rua \sqrt{3}\sqrt{7}.
\frac{6\times 3\sqrt{7}}{21}\sqrt{\frac{7}{5}}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{18\sqrt{7}}{21}\sqrt{\frac{7}{5}}
Whakareatia te 6 ki te 3, ka 18.
\frac{6}{7}\sqrt{7}\sqrt{\frac{7}{5}}
Whakawehea te 18\sqrt{7} ki te 21, kia riro ko \frac{6}{7}\sqrt{7}.
\frac{6}{7}\sqrt{7}\times \frac{\sqrt{7}}{\sqrt{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{7}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{7}}{\sqrt{5}}.
\frac{6}{7}\sqrt{7}\times \frac{\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{7}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{6}{7}\sqrt{7}\times \frac{\sqrt{7}\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{6}{7}\sqrt{7}\times \frac{\sqrt{35}}{5}
Hei whakarea \sqrt{7} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{6\sqrt{35}}{7\times 5}\sqrt{7}
Me whakarea te \frac{6}{7} ki te \frac{\sqrt{35}}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6\sqrt{35}}{35}\sqrt{7}
Whakareatia te 7 ki te 5, ka 35.
\frac{6\sqrt{35}\sqrt{7}}{35}
Tuhia te \frac{6\sqrt{35}}{35}\sqrt{7} hei hautanga kotahi.
\frac{6\sqrt{7}\sqrt{5}\sqrt{7}}{35}
Tauwehea te 35=7\times 5. Tuhia anō te pūtake rua o te hua \sqrt{7\times 5} hei hua o ngā pūtake rua \sqrt{7}\sqrt{5}.
\frac{6\times 7\sqrt{5}}{35}
Whakareatia te \sqrt{7} ki te \sqrt{7}, ka 7.
\frac{42\sqrt{5}}{35}
Whakareatia te 6 ki te 7, ka 42.
\frac{6}{5}\sqrt{5}
Whakawehea te 42\sqrt{5} ki te 35, kia riro ko \frac{6}{5}\sqrt{5}.