Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\times 3\sqrt{3}\sqrt{32}}{\sqrt{48}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{6\sqrt{3}\sqrt{32}}{\sqrt{48}}
Whakareatia te 2 ki te 3, ka 6.
\frac{6\sqrt{3}\times 4\sqrt{2}}{\sqrt{48}}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
\frac{24\sqrt{3}\sqrt{2}}{\sqrt{48}}
Whakareatia te 6 ki te 4, ka 24.
\frac{24\sqrt{6}}{\sqrt{48}}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{24\sqrt{6}}{4\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{6\sqrt{6}}{\sqrt{3}}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{6\sqrt{6}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{6\sqrt{6}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{6\sqrt{6}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{6\sqrt{3}\sqrt{2}\sqrt{3}}{3}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{6\times 3\sqrt{2}}{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
6\sqrt{2}
Me whakakore te 3 me te 3.