Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
2\times 2\sqrt{5}+\frac{2}{3}\sqrt{45}-\frac{5}{4}\sqrt{80}-\sqrt{5}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
4\sqrt{5}+\frac{2}{3}\sqrt{45}-\frac{5}{4}\sqrt{80}-\sqrt{5}
Whakareatia te 2 ki te 2, ka 4.
4\sqrt{5}+\frac{2}{3}\times 3\sqrt{5}-\frac{5}{4}\sqrt{80}-\sqrt{5}
Tauwehea te 45=3^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 5} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{5}. Tuhia te pūtakerua o te 3^{2}.
4\sqrt{5}+2\sqrt{5}-\frac{5}{4}\sqrt{80}-\sqrt{5}
Me whakakore te 3 me te 3.
6\sqrt{5}-\frac{5}{4}\sqrt{80}-\sqrt{5}
Pahekotia te 4\sqrt{5} me 2\sqrt{5}, ka 6\sqrt{5}.
6\sqrt{5}-\frac{5}{4}\times 4\sqrt{5}-\sqrt{5}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
6\sqrt{5}-5\sqrt{5}-\sqrt{5}
Me whakakore te 4 me te 4.
\sqrt{5}-\sqrt{5}
Pahekotia te 6\sqrt{5} me -5\sqrt{5}, ka \sqrt{5}.
0
Pahekotia te \sqrt{5} me -\sqrt{5}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}