Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}\left(\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
Whakarohaina te \left(2\sqrt{2-7x}\right)^{2}.
4\left(\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\left(2-7x\right)=\left(\sqrt{-36x}\right)^{2}
Tātaihia te \sqrt{2-7x} mā te pū o 2, kia riro ko 2-7x.
8-28x=\left(\sqrt{-36x}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2-7x.
8-28x=-36x
Tātaihia te \sqrt{-36x} mā te pū o 2, kia riro ko -36x.
8-28x+36x=0
Me tāpiri te 36x ki ngā taha e rua.
8+8x=0
Pahekotia te -28x me 36x, ka 8x.
8x=-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-8}{8}
Whakawehea ngā taha e rua ki te 8.
x=-1
Whakawehea te -8 ki te 8, kia riro ko -1.
2\sqrt{2-7\left(-1\right)}=\sqrt{-36\left(-1\right)}
Whakakapia te -1 mō te x i te whārite 2\sqrt{2-7x}=\sqrt{-36x}.
6=6
Whakarūnātia. Ko te uara x=-1 kua ngata te whārite.
x=-1
Ko te whārite 2\sqrt{2-7x}=\sqrt{-36x} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}