Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10\sqrt{2}\sqrt{\frac{1}{6}}
Whakareatia te 2 ki te 5, ka 10.
10\sqrt{2}\times \frac{\sqrt{1}}{\sqrt{6}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{6}}.
10\sqrt{2}\times \frac{1}{\sqrt{6}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
10\sqrt{2}\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
10\sqrt{2}\times \frac{\sqrt{6}}{6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{10\sqrt{6}}{6}\sqrt{2}
Tuhia te 10\times \frac{\sqrt{6}}{6} hei hautanga kotahi.
\frac{5}{3}\sqrt{6}\sqrt{2}
Whakawehea te 10\sqrt{6} ki te 6, kia riro ko \frac{5}{3}\sqrt{6}.
\frac{5}{3}\sqrt{2}\sqrt{3}\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{5}{3}\times 2\sqrt{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{5\times 2}{3}\sqrt{3}
Tuhia te \frac{5}{3}\times 2 hei hautanga kotahi.
\frac{10}{3}\sqrt{3}
Whakareatia te 5 ki te 2, ka 10.