Aromātai
\frac{10\sqrt{3}}{3}\approx 5.773502692
Tohaina
Kua tāruatia ki te papatopenga
10\sqrt{2}\sqrt{\frac{1}{6}}
Whakareatia te 2 ki te 5, ka 10.
10\sqrt{2}\times \frac{\sqrt{1}}{\sqrt{6}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{6}}.
10\sqrt{2}\times \frac{1}{\sqrt{6}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
10\sqrt{2}\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
10\sqrt{2}\times \frac{\sqrt{6}}{6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{10\sqrt{6}}{6}\sqrt{2}
Tuhia te 10\times \frac{\sqrt{6}}{6} hei hautanga kotahi.
\frac{5}{3}\sqrt{6}\sqrt{2}
Whakawehea te 10\sqrt{6} ki te 6, kia riro ko \frac{5}{3}\sqrt{6}.
\frac{5}{3}\sqrt{2}\sqrt{3}\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{5}{3}\times 2\sqrt{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{5\times 2}{3}\sqrt{3}
Tuhia te \frac{5}{3}\times 2 hei hautanga kotahi.
\frac{10}{3}\sqrt{3}
Whakareatia te 5 ki te 2, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}