Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times 2\sqrt{3}+\frac{4\sqrt{18}}{\sqrt{3}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
4\sqrt{3}+\frac{4\sqrt{18}}{\sqrt{3}}
Whakareatia te 2 ki te 2, ka 4.
4\sqrt{3}+\frac{4\times 3\sqrt{2}}{\sqrt{3}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
4\sqrt{3}+\frac{12\sqrt{2}}{\sqrt{3}}
Whakareatia te 4 ki te 3, ka 12.
4\sqrt{3}+\frac{12\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{12\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
4\sqrt{3}+\frac{12\sqrt{2}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
4\sqrt{3}+\frac{12\sqrt{6}}{3}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
4\sqrt{3}+4\sqrt{6}
Whakawehea te 12\sqrt{6} ki te 3, kia riro ko 4\sqrt{6}.