Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}\left(\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
Whakarohaina te \left(2\sqrt{x+5}\right)^{2}.
4\left(\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\left(x+5\right)=\left(x+2\right)^{2}
Tātaihia te \sqrt{x+5} mā te pū o 2, kia riro ko x+5.
4x+20=\left(x+2\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+5.
4x+20=x^{2}+4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
4x+20-x^{2}=4x+4
Tangohia te x^{2} mai i ngā taha e rua.
4x+20-x^{2}-4x=4
Tangohia te 4x mai i ngā taha e rua.
20-x^{2}=4
Pahekotia te 4x me -4x, ka 0.
-x^{2}=4-20
Tangohia te 20 mai i ngā taha e rua.
-x^{2}=-16
Tangohia te 20 i te 4, ka -16.
x^{2}=\frac{-16}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=16
Ka taea te hautanga \frac{-16}{-1} te whakamāmā ki te 16 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=4 x=-4
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2\sqrt{4+5}=4+2
Whakakapia te 4 mō te x i te whārite 2\sqrt{x+5}=x+2.
6=6
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
2\sqrt{-4+5}=-4+2
Whakakapia te -4 mō te x i te whārite 2\sqrt{x+5}=x+2.
2=-2
Whakarūnātia. Ko te uara x=-4 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=4
Ko te whārite 2\sqrt{x+5}=x+2 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}