Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{9x}=10-2\sqrt{x}+6
Me tango -6 mai i ngā taha e rua o te whārite.
\left(2\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}\left(\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
Whakarohaina te \left(2\sqrt{9x}\right)^{2}.
4\left(\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\times 9x=\left(10-2\sqrt{x}+6\right)^{2}
Tātaihia te \sqrt{9x} mā te pū o 2, kia riro ko 9x.
36x=\left(10-2\sqrt{x}+6\right)^{2}
Whakareatia te 4 ki te 9, ka 36.
36x=\left(10-2\sqrt{x}\right)^{2}+12\left(10-2\sqrt{x}\right)+36
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(10-2\sqrt{x}+6\right)^{2}.
36x-\left(10-2\sqrt{x}\right)^{2}=12\left(10-2\sqrt{x}\right)+36
Tangohia te \left(10-2\sqrt{x}\right)^{2} mai i ngā taha e rua.
36x-\left(10-2\sqrt{x}\right)^{2}-12\left(10-2\sqrt{x}\right)=36
Tangohia te 12\left(10-2\sqrt{x}\right) mai i ngā taha e rua.
36x-\left(100-40\sqrt{x}+4\left(\sqrt{x}\right)^{2}\right)-12\left(10-2\sqrt{x}\right)=36
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(10-2\sqrt{x}\right)^{2}.
36x-\left(100-40\sqrt{x}+4x\right)-12\left(10-2\sqrt{x}\right)=36
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
36x-100+40\sqrt{x}-4x-12\left(10-2\sqrt{x}\right)=36
Hei kimi i te tauaro o 100-40\sqrt{x}+4x, kimihia te tauaro o ia taurangi.
32x-100+40\sqrt{x}-12\left(10-2\sqrt{x}\right)=36
Pahekotia te 36x me -4x, ka 32x.
32x-100+40\sqrt{x}-120+24\sqrt{x}=36
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 10-2\sqrt{x}.
32x-220+40\sqrt{x}+24\sqrt{x}=36
Tangohia te 120 i te -100, ka -220.
32x-220+64\sqrt{x}=36
Pahekotia te 40\sqrt{x} me 24\sqrt{x}, ka 64\sqrt{x}.
32x+64\sqrt{x}=36+220
Me tāpiri te 220 ki ngā taha e rua.
32x+64\sqrt{x}=256
Tāpirihia te 36 ki te 220, ka 256.
64\sqrt{x}=256-32x
Me tango 32x mai i ngā taha e rua o te whārite.
\left(64\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
Pūruatia ngā taha e rua o te whārite.
64^{2}\left(\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
Whakarohaina te \left(64\sqrt{x}\right)^{2}.
4096\left(\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
Tātaihia te 64 mā te pū o 2, kia riro ko 4096.
4096x=\left(-32x+256\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
4096x=1024x^{2}-16384x+65536
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-32x+256\right)^{2}.
4096x-1024x^{2}=-16384x+65536
Tangohia te 1024x^{2} mai i ngā taha e rua.
4096x-1024x^{2}+16384x=65536
Me tāpiri te 16384x ki ngā taha e rua.
20480x-1024x^{2}=65536
Pahekotia te 4096x me 16384x, ka 20480x.
20480x-1024x^{2}-65536=0
Tangohia te 65536 mai i ngā taha e rua.
-1024x^{2}+20480x-65536=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-20480±\sqrt{20480^{2}-4\left(-1024\right)\left(-65536\right)}}{2\left(-1024\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1024 mō a, 20480 mō b, me -65536 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20480±\sqrt{419430400-4\left(-1024\right)\left(-65536\right)}}{2\left(-1024\right)}
Pūrua 20480.
x=\frac{-20480±\sqrt{419430400+4096\left(-65536\right)}}{2\left(-1024\right)}
Whakareatia -4 ki te -1024.
x=\frac{-20480±\sqrt{419430400-268435456}}{2\left(-1024\right)}
Whakareatia 4096 ki te -65536.
x=\frac{-20480±\sqrt{150994944}}{2\left(-1024\right)}
Tāpiri 419430400 ki te -268435456.
x=\frac{-20480±12288}{2\left(-1024\right)}
Tuhia te pūtakerua o te 150994944.
x=\frac{-20480±12288}{-2048}
Whakareatia 2 ki te -1024.
x=-\frac{8192}{-2048}
Nā, me whakaoti te whārite x=\frac{-20480±12288}{-2048} ina he tāpiri te ±. Tāpiri -20480 ki te 12288.
x=4
Whakawehe -8192 ki te -2048.
x=-\frac{32768}{-2048}
Nā, me whakaoti te whārite x=\frac{-20480±12288}{-2048} ina he tango te ±. Tango 12288 mai i -20480.
x=16
Whakawehe -32768 ki te -2048.
x=4 x=16
Kua oti te whārite te whakatau.
2\sqrt{9\times 4}-6=10-2\sqrt{4}
Whakakapia te 4 mō te x i te whārite 2\sqrt{9x}-6=10-2\sqrt{x}.
6=6
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
2\sqrt{9\times 16}-6=10-2\sqrt{16}
Whakakapia te 16 mō te x i te whārite 2\sqrt{9x}-6=10-2\sqrt{x}.
18=2
Whakarūnātia. Ko te uara x=16 kāore e ngata ana ki te whārite.
2\sqrt{9\times 4}-6=10-2\sqrt{4}
Whakakapia te 4 mō te x i te whārite 2\sqrt{9x}-6=10-2\sqrt{x}.
6=6
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite 2\sqrt{9x}=10-2\sqrt{x}+6 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}