Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2\sqrt{4\left(t-1\right)}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(2\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te t-1.
2^{2}\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Whakarohaina te \left(2\sqrt{4t-4}\right)^{2}.
4\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\left(4t-4\right)=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Tātaihia te \sqrt{4t-4} mā te pū o 2, kia riro ko 4t-4.
16t-16=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 4t-4.
16t-16=\left(\sqrt{8t-4}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2t-1.
16t-16=8t-4
Tātaihia te \sqrt{8t-4} mā te pū o 2, kia riro ko 8t-4.
16t-16-8t=-4
Tangohia te 8t mai i ngā taha e rua.
8t-16=-4
Pahekotia te 16t me -8t, ka 8t.
8t=-4+16
Me tāpiri te 16 ki ngā taha e rua.
8t=12
Tāpirihia te -4 ki te 16, ka 12.
t=\frac{12}{8}
Whakawehea ngā taha e rua ki te 8.
t=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
2\sqrt{4\left(\frac{3}{2}-1\right)}=\sqrt{4\left(2\times \frac{3}{2}-1\right)}
Whakakapia te \frac{3}{2} mō te t i te whārite 2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)}.
2\times 2^{\frac{1}{2}}=2\times 2^{\frac{1}{2}}
Whakarūnātia. Ko te uara t=\frac{3}{2} kua ngata te whārite.
t=\frac{3}{2}
Ko te whārite 2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)} he rongoā ahurei.