Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}}{\sqrt{20}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}}{2\sqrt{5}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\frac{1}{2}\sqrt{15}}{2\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}\sqrt{5}}{2\times 5}
Ko te pūrua o \sqrt{5} ko 5.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{5}\sqrt{3}\sqrt{5}}{2\times 5}
Tauwehea te 15=5\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5\times 3} hei hua o ngā pūtake rua \sqrt{5}\sqrt{3}.
2\sqrt{3}-\frac{\frac{1}{2}\times 5\sqrt{3}}{2\times 5}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
2\sqrt{3}-\frac{\frac{1}{2}\times 5\sqrt{3}}{10}
Whakareatia te 2 ki te 5, ka 10.
2\sqrt{3}-\frac{\frac{5}{2}\sqrt{3}}{10}
Whakareatia te \frac{1}{2} ki te 5, ka \frac{5}{2}.
2\sqrt{3}-\frac{1}{4}\sqrt{3}
Whakawehea te \frac{5}{2}\sqrt{3} ki te 10, kia riro ko \frac{1}{4}\sqrt{3}.
\frac{7}{4}\sqrt{3}
Pahekotia te 2\sqrt{3} me -\frac{1}{4}\sqrt{3}, ka \frac{7}{4}\sqrt{3}.