Aromātai
\frac{7\sqrt{3}}{4}\approx 3.031088913
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}}{\sqrt{20}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}}{2\sqrt{5}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\frac{1}{2}\sqrt{15}}{2\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{15}\sqrt{5}}{2\times 5}
Ko te pūrua o \sqrt{5} ko 5.
2\sqrt{3}-\frac{\frac{1}{2}\sqrt{5}\sqrt{3}\sqrt{5}}{2\times 5}
Tauwehea te 15=5\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5\times 3} hei hua o ngā pūtake rua \sqrt{5}\sqrt{3}.
2\sqrt{3}-\frac{\frac{1}{2}\times 5\sqrt{3}}{2\times 5}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
2\sqrt{3}-\frac{\frac{1}{2}\times 5\sqrt{3}}{10}
Whakareatia te 2 ki te 5, ka 10.
2\sqrt{3}-\frac{\frac{5}{2}\sqrt{3}}{10}
Whakareatia te \frac{1}{2} ki te 5, ka \frac{5}{2}.
2\sqrt{3}-\frac{1}{4}\sqrt{3}
Whakawehea te \frac{5}{2}\sqrt{3} ki te 10, kia riro ko \frac{1}{4}\sqrt{3}.
\frac{7}{4}\sqrt{3}
Pahekotia te 2\sqrt{3} me -\frac{1}{4}\sqrt{3}, ka \frac{7}{4}\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}