Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{2x+1}-6-\left(-6\right)=-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
2\sqrt{2x+1}=-\left(-6\right)
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
2\sqrt{2x+1}=6
Tango -6 mai i 0.
\frac{2\sqrt{2x+1}}{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
\sqrt{2x+1}=\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
\sqrt{2x+1}=3
Whakawehe 6 ki te 2.
2x+1=9
Pūruatia ngā taha e rua o te whārite.
2x+1-1=9-1
Me tango 1 mai i ngā taha e rua o te whārite.
2x=9-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
2x=8
Tango 1 mai i 9.
\frac{2x}{2}=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{8}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x=4
Whakawehe 8 ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}