Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō b (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2a+2b+2c=\left(a+b+c\right)k
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+b+c.
2a+2b+2c=ak+bk+ck
Whakamahia te āhuatanga tohatoha hei whakarea te a+b+c ki te k.
2a+2b+2c-ak=bk+ck
Tangohia te ak mai i ngā taha e rua.
2a+2c-ak=bk+ck-2b
Tangohia te 2b mai i ngā taha e rua.
2a-ak=bk+ck-2b-2c
Tangohia te 2c mai i ngā taha e rua.
\left(2-k\right)a=bk+ck-2b-2c
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(2-k\right)a=bk-2b+ck-2c
He hanga arowhānui tō te whārite.
\frac{\left(2-k\right)a}{2-k}=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Whakawehea ngā taha e rua ki te 2-k.
a=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Mā te whakawehe ki te 2-k ka wetekia te whakareanga ki te 2-k.
a=-\left(b+c\right)
Whakawehe \left(-2+k\right)\left(b+c\right) ki te 2-k.
2a+2b+2c=\left(a+b+c\right)k
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+b+c.
2a+2b+2c=ak+bk+ck
Whakamahia te āhuatanga tohatoha hei whakarea te a+b+c ki te k.
2a+2b+2c-bk=ak+ck
Tangohia te bk mai i ngā taha e rua.
2b+2c-bk=ak+ck-2a
Tangohia te 2a mai i ngā taha e rua.
2b-bk=ak+ck-2a-2c
Tangohia te 2c mai i ngā taha e rua.
\left(2-k\right)b=ak+ck-2a-2c
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(2-k\right)b=ak-2a+ck-2c
He hanga arowhānui tō te whārite.
\frac{\left(2-k\right)b}{2-k}=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Whakawehea ngā taha e rua ki te 2-k.
b=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Mā te whakawehe ki te 2-k ka wetekia te whakareanga ki te 2-k.
b=-\left(a+c\right)
Whakawehe \left(-2+k\right)\left(a+c\right) ki te 2-k.
2a+2b+2c=\left(a+b+c\right)k
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+b+c.
2a+2b+2c=ak+bk+ck
Whakamahia te āhuatanga tohatoha hei whakarea te a+b+c ki te k.
2a+2b+2c-ak=bk+ck
Tangohia te ak mai i ngā taha e rua.
2a+2c-ak=bk+ck-2b
Tangohia te 2b mai i ngā taha e rua.
2a-ak=bk+ck-2b-2c
Tangohia te 2c mai i ngā taha e rua.
\left(2-k\right)a=bk+ck-2b-2c
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(2-k\right)a=bk-2b+ck-2c
He hanga arowhānui tō te whārite.
\frac{\left(2-k\right)a}{2-k}=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Whakawehea ngā taha e rua ki te 2-k.
a=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Mā te whakawehe ki te 2-k ka wetekia te whakareanga ki te 2-k.
a=-\left(b+c\right)
Whakawehe \left(-2+k\right)\left(b+c\right) ki te 2-k.
2a+2b+2c=\left(a+b+c\right)k
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+b+c.
2a+2b+2c=ak+bk+ck
Whakamahia te āhuatanga tohatoha hei whakarea te a+b+c ki te k.
2a+2b+2c-bk=ak+ck
Tangohia te bk mai i ngā taha e rua.
2b+2c-bk=ak+ck-2a
Tangohia te 2a mai i ngā taha e rua.
2b-bk=ak+ck-2a-2c
Tangohia te 2c mai i ngā taha e rua.
\left(2-k\right)b=ak+ck-2a-2c
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(2-k\right)b=ak-2a+ck-2c
He hanga arowhānui tō te whārite.
\frac{\left(2-k\right)b}{2-k}=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Whakawehea ngā taha e rua ki te 2-k.
b=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Mā te whakawehe ki te 2-k ka wetekia te whakareanga ki te 2-k.
b=-\left(a+c\right)
Whakawehe \left(-2+k\right)\left(a+c\right) ki te 2-k.