Whakaoti mō a (complex solution)
\left\{\begin{matrix}\\a=-\left(b+c\right)\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&k=2\end{matrix}\right.
Whakaoti mō b (complex solution)
\left\{\begin{matrix}\\b=-\left(a+c\right)\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&k=2\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}\\a=-\left(b+c\right)\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&k=2\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}\\b=-\left(a+c\right)\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&k=2\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
2a+2b+2c=\left(a+b+c\right)k
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+b+c.
2a+2b+2c=ak+bk+ck
Whakamahia te āhuatanga tohatoha hei whakarea te a+b+c ki te k.
2a+2b+2c-ak=bk+ck
Tangohia te ak mai i ngā taha e rua.
2a+2c-ak=bk+ck-2b
Tangohia te 2b mai i ngā taha e rua.
2a-ak=bk+ck-2b-2c
Tangohia te 2c mai i ngā taha e rua.
\left(2-k\right)a=bk+ck-2b-2c
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(2-k\right)a=bk-2b+ck-2c
He hanga arowhānui tō te whārite.
\frac{\left(2-k\right)a}{2-k}=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Whakawehea ngā taha e rua ki te 2-k.
a=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Mā te whakawehe ki te 2-k ka wetekia te whakareanga ki te 2-k.
a=-\left(b+c\right)
Whakawehe \left(-2+k\right)\left(b+c\right) ki te 2-k.
2a+2b+2c=\left(a+b+c\right)k
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+b+c.
2a+2b+2c=ak+bk+ck
Whakamahia te āhuatanga tohatoha hei whakarea te a+b+c ki te k.
2a+2b+2c-bk=ak+ck
Tangohia te bk mai i ngā taha e rua.
2b+2c-bk=ak+ck-2a
Tangohia te 2a mai i ngā taha e rua.
2b-bk=ak+ck-2a-2c
Tangohia te 2c mai i ngā taha e rua.
\left(2-k\right)b=ak+ck-2a-2c
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(2-k\right)b=ak-2a+ck-2c
He hanga arowhānui tō te whārite.
\frac{\left(2-k\right)b}{2-k}=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Whakawehea ngā taha e rua ki te 2-k.
b=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Mā te whakawehe ki te 2-k ka wetekia te whakareanga ki te 2-k.
b=-\left(a+c\right)
Whakawehe \left(-2+k\right)\left(a+c\right) ki te 2-k.
2a+2b+2c=\left(a+b+c\right)k
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+b+c.
2a+2b+2c=ak+bk+ck
Whakamahia te āhuatanga tohatoha hei whakarea te a+b+c ki te k.
2a+2b+2c-ak=bk+ck
Tangohia te ak mai i ngā taha e rua.
2a+2c-ak=bk+ck-2b
Tangohia te 2b mai i ngā taha e rua.
2a-ak=bk+ck-2b-2c
Tangohia te 2c mai i ngā taha e rua.
\left(2-k\right)a=bk+ck-2b-2c
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(2-k\right)a=bk-2b+ck-2c
He hanga arowhānui tō te whārite.
\frac{\left(2-k\right)a}{2-k}=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Whakawehea ngā taha e rua ki te 2-k.
a=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Mā te whakawehe ki te 2-k ka wetekia te whakareanga ki te 2-k.
a=-\left(b+c\right)
Whakawehe \left(-2+k\right)\left(b+c\right) ki te 2-k.
2a+2b+2c=\left(a+b+c\right)k
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a+b+c.
2a+2b+2c=ak+bk+ck
Whakamahia te āhuatanga tohatoha hei whakarea te a+b+c ki te k.
2a+2b+2c-bk=ak+ck
Tangohia te bk mai i ngā taha e rua.
2b+2c-bk=ak+ck-2a
Tangohia te 2a mai i ngā taha e rua.
2b-bk=ak+ck-2a-2c
Tangohia te 2c mai i ngā taha e rua.
\left(2-k\right)b=ak+ck-2a-2c
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(2-k\right)b=ak-2a+ck-2c
He hanga arowhānui tō te whārite.
\frac{\left(2-k\right)b}{2-k}=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Whakawehea ngā taha e rua ki te 2-k.
b=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Mā te whakawehe ki te 2-k ka wetekia te whakareanga ki te 2-k.
b=-\left(a+c\right)
Whakawehe \left(-2+k\right)\left(a+c\right) ki te 2-k.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}