Aromātai
-\frac{291}{10}=-29.1
Tauwehe
-\frac{291}{10} = -29\frac{1}{10} = -29.1
Tohaina
Kua tāruatia ki te papatopenga
\frac{4+1}{2}+\frac{48}{-2}-\frac{7\times 5+3}{5}
Whakareatia te 2 ki te 2, ka 4.
\frac{5}{2}+\frac{48}{-2}-\frac{7\times 5+3}{5}
Tāpirihia te 4 ki te 1, ka 5.
\frac{5}{2}-24-\frac{7\times 5+3}{5}
Whakawehea te 48 ki te -2, kia riro ko -24.
\frac{5}{2}-\frac{48}{2}-\frac{7\times 5+3}{5}
Me tahuri te 24 ki te hautau \frac{48}{2}.
\frac{5-48}{2}-\frac{7\times 5+3}{5}
Tā te mea he rite te tauraro o \frac{5}{2} me \frac{48}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{43}{2}-\frac{7\times 5+3}{5}
Tangohia te 48 i te 5, ka -43.
-\frac{43}{2}-\frac{35+3}{5}
Whakareatia te 7 ki te 5, ka 35.
-\frac{43}{2}-\frac{38}{5}
Tāpirihia te 35 ki te 3, ka 38.
-\frac{215}{10}-\frac{76}{10}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri -\frac{43}{2} me \frac{38}{5} ki te hautau me te tautūnga 10.
\frac{-215-76}{10}
Tā te mea he rite te tauraro o -\frac{215}{10} me \frac{76}{10}, me tango rāua mā te tango i ō raua taurunga.
-\frac{291}{10}
Tangohia te 76 i te -215, ka -291.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}