Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2\times 8+5\right)\times 4}{8\left(1\times 4+3\right)}
Whakawehe \frac{2\times 8+5}{8} ki te \frac{1\times 4+3}{4} mā te whakarea \frac{2\times 8+5}{8} ki te tau huripoki o \frac{1\times 4+3}{4}.
\frac{5+2\times 8}{2\left(3+4\right)}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{5+16}{2\left(3+4\right)}
Whakareatia te 2 ki te 8, ka 16.
\frac{21}{2\left(3+4\right)}
Tāpirihia te 5 ki te 16, ka 21.
\frac{21}{2\times 7}
Tāpirihia te 3 ki te 4, ka 7.
\frac{21}{14}
Whakareatia te 2 ki te 7, ka 14.
\frac{3}{2}
Whakahekea te hautanga \frac{21}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}