Aromātai
\frac{487}{70}\approx 6.957142857
Tauwehe
\frac{487}{2 \cdot 5 \cdot 7} = 6\frac{67}{70} = 6.957142857142857
Tohaina
Kua tāruatia ki te papatopenga
\frac{14+5}{7}+\frac{3}{10}-4\times \frac{-69}{70}
Whakareatia te 2 ki te 7, ka 14.
\frac{19}{7}+\frac{3}{10}-4\times \frac{-69}{70}
Tāpirihia te 14 ki te 5, ka 19.
\frac{190}{70}+\frac{21}{70}-4\times \frac{-69}{70}
Ko te maha noa iti rawa atu o 7 me 10 ko 70. Me tahuri \frac{19}{7} me \frac{3}{10} ki te hautau me te tautūnga 70.
\frac{190+21}{70}-4\times \frac{-69}{70}
Tā te mea he rite te tauraro o \frac{190}{70} me \frac{21}{70}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{211}{70}-4\times \frac{-69}{70}
Tāpirihia te 190 ki te 21, ka 211.
\frac{211}{70}-4\left(-\frac{69}{70}\right)
Ka taea te hautanga \frac{-69}{70} te tuhi anō ko -\frac{69}{70} mā te tango i te tohu tōraro.
\frac{211}{70}-\frac{4\left(-69\right)}{70}
Tuhia te 4\left(-\frac{69}{70}\right) hei hautanga kotahi.
\frac{211}{70}-\frac{-276}{70}
Whakareatia te 4 ki te -69, ka -276.
\frac{211}{70}-\left(-\frac{138}{35}\right)
Whakahekea te hautanga \frac{-276}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{211}{70}+\frac{138}{35}
Ko te tauaro o -\frac{138}{35} ko \frac{138}{35}.
\frac{211}{70}+\frac{276}{70}
Ko te maha noa iti rawa atu o 70 me 35 ko 70. Me tahuri \frac{211}{70} me \frac{138}{35} ki te hautau me te tautūnga 70.
\frac{211+276}{70}
Tā te mea he rite te tauraro o \frac{211}{70} me \frac{276}{70}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{487}{70}
Tāpirihia te 211 ki te 276, ka 487.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}