Aromātai
\frac{26}{3}\approx 8.666666667
Tauwehe
\frac{2 \cdot 13}{3} = 8\frac{2}{3} = 8.666666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{12+4}{6}\times \frac{3\times 8+2}{8}
Whakareatia te 2 ki te 6, ka 12.
\frac{16}{6}\times \frac{3\times 8+2}{8}
Tāpirihia te 12 ki te 4, ka 16.
\frac{8}{3}\times \frac{3\times 8+2}{8}
Whakahekea te hautanga \frac{16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8}{3}\times \frac{24+2}{8}
Whakareatia te 3 ki te 8, ka 24.
\frac{8}{3}\times \frac{26}{8}
Tāpirihia te 24 ki te 2, ka 26.
\frac{8}{3}\times \frac{13}{4}
Whakahekea te hautanga \frac{26}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8\times 13}{3\times 4}
Me whakarea te \frac{8}{3} ki te \frac{13}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{104}{12}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 13}{3\times 4}.
\frac{26}{3}
Whakahekea te hautanga \frac{104}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}