Aromātai
-\frac{a}{3}-\frac{8}{15}
Whakaroha
-\frac{a}{3}-\frac{8}{15}
Tohaina
Kua tāruatia ki te papatopenga
\frac{10+4}{5}-\frac{a+10}{3}
Whakareatia te 2 ki te 5, ka 10.
\frac{14}{5}-\frac{a+10}{3}
Tāpirihia te 10 ki te 4, ka 14.
\frac{14\times 3}{15}-\frac{5\left(a+10\right)}{15}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 3 ko 15. Whakareatia \frac{14}{5} ki te \frac{3}{3}. Whakareatia \frac{a+10}{3} ki te \frac{5}{5}.
\frac{14\times 3-5\left(a+10\right)}{15}
Tā te mea he rite te tauraro o \frac{14\times 3}{15} me \frac{5\left(a+10\right)}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{42-5a-50}{15}
Mahia ngā whakarea i roto o 14\times 3-5\left(a+10\right).
\frac{-8-5a}{15}
Whakakotahitia ngā kupu rite i 42-5a-50.
\frac{10+4}{5}-\frac{a+10}{3}
Whakareatia te 2 ki te 5, ka 10.
\frac{14}{5}-\frac{a+10}{3}
Tāpirihia te 10 ki te 4, ka 14.
\frac{14\times 3}{15}-\frac{5\left(a+10\right)}{15}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 3 ko 15. Whakareatia \frac{14}{5} ki te \frac{3}{3}. Whakareatia \frac{a+10}{3} ki te \frac{5}{5}.
\frac{14\times 3-5\left(a+10\right)}{15}
Tā te mea he rite te tauraro o \frac{14\times 3}{15} me \frac{5\left(a+10\right)}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{42-5a-50}{15}
Mahia ngā whakarea i roto o 14\times 3-5\left(a+10\right).
\frac{-8-5a}{15}
Whakakotahitia ngā kupu rite i 42-5a-50.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}