Aromātai
-\frac{7}{4}=-1.75
Tauwehe
-\frac{7}{4} = -1\frac{3}{4} = -1.75
Tohaina
Kua tāruatia ki te papatopenga
\frac{26+4}{13}\left(\frac{3}{8}-\frac{4}{15}\right)-\frac{11}{\frac{5\times 2+1}{2}}
Whakareatia te 2 ki te 13, ka 26.
\frac{30}{13}\left(\frac{3}{8}-\frac{4}{15}\right)-\frac{11}{\frac{5\times 2+1}{2}}
Tāpirihia te 26 ki te 4, ka 30.
\frac{30}{13}\left(\frac{45}{120}-\frac{32}{120}\right)-\frac{11}{\frac{5\times 2+1}{2}}
Ko te maha noa iti rawa atu o 8 me 15 ko 120. Me tahuri \frac{3}{8} me \frac{4}{15} ki te hautau me te tautūnga 120.
\frac{30}{13}\times \frac{45-32}{120}-\frac{11}{\frac{5\times 2+1}{2}}
Tā te mea he rite te tauraro o \frac{45}{120} me \frac{32}{120}, me tango rāua mā te tango i ō raua taurunga.
\frac{30}{13}\times \frac{13}{120}-\frac{11}{\frac{5\times 2+1}{2}}
Tangohia te 32 i te 45, ka 13.
\frac{30\times 13}{13\times 120}-\frac{11}{\frac{5\times 2+1}{2}}
Me whakarea te \frac{30}{13} ki te \frac{13}{120} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{30}{120}-\frac{11}{\frac{5\times 2+1}{2}}
Me whakakore tahi te 13 i te taurunga me te tauraro.
\frac{1}{4}-\frac{11}{\frac{5\times 2+1}{2}}
Whakahekea te hautanga \frac{30}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
\frac{1}{4}-\frac{11\times 2}{5\times 2+1}
Whakawehe 11 ki te \frac{5\times 2+1}{2} mā te whakarea 11 ki te tau huripoki o \frac{5\times 2+1}{2}.
\frac{1}{4}-\frac{22}{5\times 2+1}
Whakareatia te 11 ki te 2, ka 22.
\frac{1}{4}-\frac{22}{10+1}
Whakareatia te 5 ki te 2, ka 10.
\frac{1}{4}-\frac{22}{11}
Tāpirihia te 10 ki te 1, ka 11.
\frac{1}{4}-2
Whakawehea te 22 ki te 11, kia riro ko 2.
\frac{1}{4}-\frac{8}{4}
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{1-8}{4}
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{8}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{4}
Tangohia te 8 i te 1, ka -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}