Aromātai
-\frac{3}{2}=-1.5
Tauwehe
-\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{26+4}{13}\left(\frac{4}{5}-\frac{7}{12}\right)-\frac{7}{\frac{3\times 2+1}{2}}
Whakareatia te 2 ki te 13, ka 26.
\frac{30}{13}\left(\frac{4}{5}-\frac{7}{12}\right)-\frac{7}{\frac{3\times 2+1}{2}}
Tāpirihia te 26 ki te 4, ka 30.
\frac{30}{13}\left(\frac{48}{60}-\frac{35}{60}\right)-\frac{7}{\frac{3\times 2+1}{2}}
Ko te maha noa iti rawa atu o 5 me 12 ko 60. Me tahuri \frac{4}{5} me \frac{7}{12} ki te hautau me te tautūnga 60.
\frac{30}{13}\times \frac{48-35}{60}-\frac{7}{\frac{3\times 2+1}{2}}
Tā te mea he rite te tauraro o \frac{48}{60} me \frac{35}{60}, me tango rāua mā te tango i ō raua taurunga.
\frac{30}{13}\times \frac{13}{60}-\frac{7}{\frac{3\times 2+1}{2}}
Tangohia te 35 i te 48, ka 13.
\frac{30\times 13}{13\times 60}-\frac{7}{\frac{3\times 2+1}{2}}
Me whakarea te \frac{30}{13} ki te \frac{13}{60} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{30}{60}-\frac{7}{\frac{3\times 2+1}{2}}
Me whakakore tahi te 13 i te taurunga me te tauraro.
\frac{1}{2}-\frac{7}{\frac{3\times 2+1}{2}}
Whakahekea te hautanga \frac{30}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
\frac{1}{2}-\frac{7\times 2}{3\times 2+1}
Whakawehe 7 ki te \frac{3\times 2+1}{2} mā te whakarea 7 ki te tau huripoki o \frac{3\times 2+1}{2}.
\frac{1}{2}-\frac{14}{3\times 2+1}
Whakareatia te 7 ki te 2, ka 14.
\frac{1}{2}-\frac{14}{6+1}
Whakareatia te 3 ki te 2, ka 6.
\frac{1}{2}-\frac{14}{7}
Tāpirihia te 6 ki te 1, ka 7.
\frac{1}{2}-2
Whakawehea te 14 ki te 7, kia riro ko 2.
\frac{1}{2}-\frac{4}{2}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{1-4}{2}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{4}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{3}{2}
Tangohia te 4 i te 1, ka -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}