Aromātai
\frac{583}{15}\approx 38.866666667
Tauwehe
\frac{11 \cdot 53}{3 \cdot 5} = 38\frac{13}{15} = 38.86666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{10+3}{5}\times \frac{8\times 3+1}{3}+\frac{7\times 6+1}{6}\times \frac{2\times 5+2}{5}
Whakareatia te 2 ki te 5, ka 10.
\frac{13}{5}\times \frac{8\times 3+1}{3}+\frac{7\times 6+1}{6}\times \frac{2\times 5+2}{5}
Tāpirihia te 10 ki te 3, ka 13.
\frac{13}{5}\times \frac{24+1}{3}+\frac{7\times 6+1}{6}\times \frac{2\times 5+2}{5}
Whakareatia te 8 ki te 3, ka 24.
\frac{13}{5}\times \frac{25}{3}+\frac{7\times 6+1}{6}\times \frac{2\times 5+2}{5}
Tāpirihia te 24 ki te 1, ka 25.
\frac{13\times 25}{5\times 3}+\frac{7\times 6+1}{6}\times \frac{2\times 5+2}{5}
Me whakarea te \frac{13}{5} ki te \frac{25}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{325}{15}+\frac{7\times 6+1}{6}\times \frac{2\times 5+2}{5}
Mahia ngā whakarea i roto i te hautanga \frac{13\times 25}{5\times 3}.
\frac{65}{3}+\frac{7\times 6+1}{6}\times \frac{2\times 5+2}{5}
Whakahekea te hautanga \frac{325}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{65}{3}+\frac{42+1}{6}\times \frac{2\times 5+2}{5}
Whakareatia te 7 ki te 6, ka 42.
\frac{65}{3}+\frac{43}{6}\times \frac{2\times 5+2}{5}
Tāpirihia te 42 ki te 1, ka 43.
\frac{65}{3}+\frac{43}{6}\times \frac{10+2}{5}
Whakareatia te 2 ki te 5, ka 10.
\frac{65}{3}+\frac{43}{6}\times \frac{12}{5}
Tāpirihia te 10 ki te 2, ka 12.
\frac{65}{3}+\frac{43\times 12}{6\times 5}
Me whakarea te \frac{43}{6} ki te \frac{12}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{65}{3}+\frac{516}{30}
Mahia ngā whakarea i roto i te hautanga \frac{43\times 12}{6\times 5}.
\frac{65}{3}+\frac{86}{5}
Whakahekea te hautanga \frac{516}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{325}{15}+\frac{258}{15}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{65}{3} me \frac{86}{5} ki te hautau me te tautūnga 15.
\frac{325+258}{15}
Tā te mea he rite te tauraro o \frac{325}{15} me \frac{258}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{583}{15}
Tāpirihia te 325 ki te 258, ka 583.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}