Aromātai
\frac{101}{210}\approx 0.480952381
Tauwehe
\frac{101}{2 \cdot 3 \cdot 5 \cdot 7} = 0.48095238095238096
Tohaina
Kua tāruatia ki te papatopenga
\frac{28+3}{14}-\frac{3\times 6+5}{6}-\frac{2}{5}+\frac{2\times 2+1}{2}
Whakareatia te 2 ki te 14, ka 28.
\frac{31}{14}-\frac{3\times 6+5}{6}-\frac{2}{5}+\frac{2\times 2+1}{2}
Tāpirihia te 28 ki te 3, ka 31.
\frac{31}{14}-\frac{18+5}{6}-\frac{2}{5}+\frac{2\times 2+1}{2}
Whakareatia te 3 ki te 6, ka 18.
\frac{31}{14}-\frac{23}{6}-\frac{2}{5}+\frac{2\times 2+1}{2}
Tāpirihia te 18 ki te 5, ka 23.
\frac{93}{42}-\frac{161}{42}-\frac{2}{5}+\frac{2\times 2+1}{2}
Ko te maha noa iti rawa atu o 14 me 6 ko 42. Me tahuri \frac{31}{14} me \frac{23}{6} ki te hautau me te tautūnga 42.
\frac{93-161}{42}-\frac{2}{5}+\frac{2\times 2+1}{2}
Tā te mea he rite te tauraro o \frac{93}{42} me \frac{161}{42}, me tango rāua mā te tango i ō raua taurunga.
\frac{-68}{42}-\frac{2}{5}+\frac{2\times 2+1}{2}
Tangohia te 161 i te 93, ka -68.
-\frac{34}{21}-\frac{2}{5}+\frac{2\times 2+1}{2}
Whakahekea te hautanga \frac{-68}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{170}{105}-\frac{42}{105}+\frac{2\times 2+1}{2}
Ko te maha noa iti rawa atu o 21 me 5 ko 105. Me tahuri -\frac{34}{21} me \frac{2}{5} ki te hautau me te tautūnga 105.
\frac{-170-42}{105}+\frac{2\times 2+1}{2}
Tā te mea he rite te tauraro o -\frac{170}{105} me \frac{42}{105}, me tango rāua mā te tango i ō raua taurunga.
-\frac{212}{105}+\frac{2\times 2+1}{2}
Tangohia te 42 i te -170, ka -212.
-\frac{212}{105}+\frac{4+1}{2}
Whakareatia te 2 ki te 2, ka 4.
-\frac{212}{105}+\frac{5}{2}
Tāpirihia te 4 ki te 1, ka 5.
-\frac{424}{210}+\frac{525}{210}
Ko te maha noa iti rawa atu o 105 me 2 ko 210. Me tahuri -\frac{212}{105} me \frac{5}{2} ki te hautau me te tautūnga 210.
\frac{-424+525}{210}
Tā te mea he rite te tauraro o -\frac{424}{210} me \frac{525}{210}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{101}{210}
Tāpirihia te -424 ki te 525, ka 101.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}