Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(2x+1\right)-\sqrt{2}\left(x+1\right)=0
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+1.
4x+2-\sqrt{2}\left(x+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x+1.
4x+2-\sqrt{2}x-\sqrt{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te -\sqrt{2} ki te x+1.
4x-\sqrt{2}x-\sqrt{2}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-\sqrt{2}x=-2+\sqrt{2}
Me tāpiri te \sqrt{2} ki ngā taha e rua.
\left(4-\sqrt{2}\right)x=-2+\sqrt{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(4-\sqrt{2}\right)x=\sqrt{2}-2
He hanga arowhānui tō te whārite.
\frac{\left(4-\sqrt{2}\right)x}{4-\sqrt{2}}=\frac{\sqrt{2}-2}{4-\sqrt{2}}
Whakawehea ngā taha e rua ki te 4-\sqrt{2}.
x=\frac{\sqrt{2}-2}{4-\sqrt{2}}
Mā te whakawehe ki te 4-\sqrt{2} ka wetekia te whakareanga ki te 4-\sqrt{2}.
x=\frac{\sqrt{2}-3}{7}
Whakawehe -2+\sqrt{2} ki te 4-\sqrt{2}.