Whakaoti mō x
x=\frac{\sqrt{2}-3}{7}\approx -0.22654092
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(2x+1\right)-\sqrt{2}\left(x+1\right)=0
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+1.
4x+2-\sqrt{2}\left(x+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x+1.
4x+2-\sqrt{2}x-\sqrt{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te -\sqrt{2} ki te x+1.
4x-\sqrt{2}x-\sqrt{2}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-\sqrt{2}x=-2+\sqrt{2}
Me tāpiri te \sqrt{2} ki ngā taha e rua.
\left(4-\sqrt{2}\right)x=-2+\sqrt{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(4-\sqrt{2}\right)x=\sqrt{2}-2
He hanga arowhānui tō te whārite.
\frac{\left(4-\sqrt{2}\right)x}{4-\sqrt{2}}=\frac{\sqrt{2}-2}{4-\sqrt{2}}
Whakawehea ngā taha e rua ki te 4-\sqrt{2}.
x=\frac{\sqrt{2}-2}{4-\sqrt{2}}
Mā te whakawehe ki te 4-\sqrt{2} ka wetekia te whakareanga ki te 4-\sqrt{2}.
x=\frac{\sqrt{2}-3}{7}
Whakawehe -2+\sqrt{2} ki te 4-\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}