Aromātai
\frac{9}{40}=0.225
Tauwehe
\frac{3 ^ {2}}{2 ^ {3} \cdot 5} = 0.225
Tohaina
Kua tāruatia ki te papatopenga
\frac{10+2}{5}\times \frac{1}{4}-\frac{3}{8}
Whakareatia te 2 ki te 5, ka 10.
\frac{12}{5}\times \frac{1}{4}-\frac{3}{8}
Tāpirihia te 10 ki te 2, ka 12.
\frac{12\times 1}{5\times 4}-\frac{3}{8}
Me whakarea te \frac{12}{5} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{12}{20}-\frac{3}{8}
Mahia ngā whakarea i roto i te hautanga \frac{12\times 1}{5\times 4}.
\frac{3}{5}-\frac{3}{8}
Whakahekea te hautanga \frac{12}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{24}{40}-\frac{15}{40}
Ko te maha noa iti rawa atu o 5 me 8 ko 40. Me tahuri \frac{3}{5} me \frac{3}{8} ki te hautau me te tautūnga 40.
\frac{24-15}{40}
Tā te mea he rite te tauraro o \frac{24}{40} me \frac{15}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{9}{40}
Tangohia te 15 i te 24, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}