Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times \frac{\left(1-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Me whakarea te taurunga me te tauraro o \frac{1-i}{2+i} ki te haumi hiato o te tauraro, 2-i.
2\times \frac{\left(1-i\right)\left(2-i\right)}{2^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{\left(1-i\right)\left(2-i\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
2\times \frac{1\times 2+1\left(-i\right)-i\times 2-\left(-i^{2}\right)}{5}
Me whakarea ngā tau matatini 1-i me 2-i pēnā i te whakarea huarua.
2\times \frac{1\times 2+1\left(-i\right)-i\times 2-\left(-\left(-1\right)\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1.
2\times \frac{2-i-2i-1}{5}
Mahia ngā whakarea i roto o 1\times 2+1\left(-i\right)-i\times 2-\left(-\left(-1\right)\right).
2\times \frac{2-1+\left(-1-2\right)i}{5}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2-i-2i-1.
2\times \frac{1-3i}{5}
Mahia ngā tāpiri i roto o 2-1+\left(-1-2\right)i.
2\left(\frac{1}{5}-\frac{3}{5}i\right)
Whakawehea te 1-3i ki te 5, kia riro ko \frac{1}{5}-\frac{3}{5}i.
2\times \frac{1}{5}+2\times \left(-\frac{3}{5}i\right)
Whakareatia 2 ki te \frac{1}{5}-\frac{3}{5}i.
\frac{2}{5}-\frac{6}{5}i
Mahia ngā whakarea.
Re(2\times \frac{\left(1-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Me whakarea te taurunga me te tauraro o \frac{1-i}{2+i} ki te haumi hiato o te tauraro, 2-i.
Re(2\times \frac{\left(1-i\right)\left(2-i\right)}{2^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(2\times \frac{\left(1-i\right)\left(2-i\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(2\times \frac{1\times 2+1\left(-i\right)-i\times 2-\left(-i^{2}\right)}{5})
Me whakarea ngā tau matatini 1-i me 2-i pēnā i te whakarea huarua.
Re(2\times \frac{1\times 2+1\left(-i\right)-i\times 2-\left(-\left(-1\right)\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(2\times \frac{2-i-2i-1}{5})
Mahia ngā whakarea i roto o 1\times 2+1\left(-i\right)-i\times 2-\left(-\left(-1\right)\right).
Re(2\times \frac{2-1+\left(-1-2\right)i}{5})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2-i-2i-1.
Re(2\times \frac{1-3i}{5})
Mahia ngā tāpiri i roto o 2-1+\left(-1-2\right)i.
Re(2\left(\frac{1}{5}-\frac{3}{5}i\right))
Whakawehea te 1-3i ki te 5, kia riro ko \frac{1}{5}-\frac{3}{5}i.
Re(2\times \frac{1}{5}+2\times \left(-\frac{3}{5}i\right))
Whakareatia 2 ki te \frac{1}{5}-\frac{3}{5}i.
Re(\frac{2}{5}-\frac{6}{5}i)
Mahia ngā whakarea i roto o 2\times \frac{1}{5}+2\times \left(-\frac{3}{5}i\right).
\frac{2}{5}
Ko te wāhi tūturu o \frac{2}{5}-\frac{6}{5}i ko \frac{2}{5}.