Aromātai
-\frac{21}{4}=-5.25
Tauwehe
-\frac{21}{4} = -5\frac{1}{4} = -5.25
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{8+1}{4}\left(-\frac{3\times 3+1}{3}\right)}{\frac{1\times 7+3}{7}}
Whakareatia te 2 ki te 4, ka 8.
\frac{\frac{9}{4}\left(-\frac{3\times 3+1}{3}\right)}{\frac{1\times 7+3}{7}}
Tāpirihia te 8 ki te 1, ka 9.
\frac{\frac{9}{4}\left(-\frac{9+1}{3}\right)}{\frac{1\times 7+3}{7}}
Whakareatia te 3 ki te 3, ka 9.
\frac{\frac{9}{4}\left(-\frac{10}{3}\right)}{\frac{1\times 7+3}{7}}
Tāpirihia te 9 ki te 1, ka 10.
\frac{\frac{9\left(-10\right)}{4\times 3}}{\frac{1\times 7+3}{7}}
Me whakarea te \frac{9}{4} ki te -\frac{10}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{-90}{12}}{\frac{1\times 7+3}{7}}
Mahia ngā whakarea i roto i te hautanga \frac{9\left(-10\right)}{4\times 3}.
\frac{-\frac{15}{2}}{\frac{1\times 7+3}{7}}
Whakahekea te hautanga \frac{-90}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{-\frac{15}{2}}{\frac{7+3}{7}}
Whakareatia te 1 ki te 7, ka 7.
\frac{-\frac{15}{2}}{\frac{10}{7}}
Tāpirihia te 7 ki te 3, ka 10.
-\frac{15}{2}\times \frac{7}{10}
Whakawehe -\frac{15}{2} ki te \frac{10}{7} mā te whakarea -\frac{15}{2} ki te tau huripoki o \frac{10}{7}.
\frac{-15\times 7}{2\times 10}
Me whakarea te -\frac{15}{2} ki te \frac{7}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-105}{20}
Mahia ngā whakarea i roto i te hautanga \frac{-15\times 7}{2\times 10}.
-\frac{21}{4}
Whakahekea te hautanga \frac{-105}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}