Aromātai
-1075
Tauwehe
-1075
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
2 \frac { 1 } { 3 } \times ( 325 - 4 ) - 1821 + ( - 3 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{6+1}{3}\left(325-4\right)-1821-3
Whakareatia te 2 ki te 3, ka 6.
\frac{7}{3}\left(325-4\right)-1821-3
Tāpirihia te 6 ki te 1, ka 7.
\frac{7}{3}\times 321-1821-3
Tangohia te 4 i te 325, ka 321.
\frac{7\times 321}{3}-1821-3
Tuhia te \frac{7}{3}\times 321 hei hautanga kotahi.
\frac{2247}{3}-1821-3
Whakareatia te 7 ki te 321, ka 2247.
749-1821-3
Whakawehea te 2247 ki te 3, kia riro ko 749.
-1072-3
Tangohia te 1821 i te 749, ka -1072.
-1075
Tangohia te 3 i te -1072, ka -1075.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}