Aromātai
\frac{11}{2}=5.5
Tauwehe
\frac{11}{2} = 5\frac{1}{2} = 5.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{6+1}{3}\left(-\frac{1}{2}\right)-\frac{\frac{2}{3}\left(-2\right)}{\frac{1}{5}}
Whakareatia te 2 ki te 3, ka 6.
\frac{7}{3}\left(-\frac{1}{2}\right)-\frac{\frac{2}{3}\left(-2\right)}{\frac{1}{5}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{7\left(-1\right)}{3\times 2}-\frac{\frac{2}{3}\left(-2\right)}{\frac{1}{5}}
Me whakarea te \frac{7}{3} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-7}{6}-\frac{\frac{2}{3}\left(-2\right)}{\frac{1}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{7\left(-1\right)}{3\times 2}.
-\frac{7}{6}-\frac{\frac{2}{3}\left(-2\right)}{\frac{1}{5}}
Ka taea te hautanga \frac{-7}{6} te tuhi anō ko -\frac{7}{6} mā te tango i te tohu tōraro.
-\frac{7}{6}-\frac{\frac{2\left(-2\right)}{3}}{\frac{1}{5}}
Tuhia te \frac{2}{3}\left(-2\right) hei hautanga kotahi.
-\frac{7}{6}-\frac{\frac{-4}{3}}{\frac{1}{5}}
Whakareatia te 2 ki te -2, ka -4.
-\frac{7}{6}-\frac{-\frac{4}{3}}{\frac{1}{5}}
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
-\frac{7}{6}-\left(-\frac{4}{3}\times 5\right)
Whakawehe -\frac{4}{3} ki te \frac{1}{5} mā te whakarea -\frac{4}{3} ki te tau huripoki o \frac{1}{5}.
-\frac{7}{6}-\frac{-4\times 5}{3}
Tuhia te -\frac{4}{3}\times 5 hei hautanga kotahi.
-\frac{7}{6}-\frac{-20}{3}
Whakareatia te -4 ki te 5, ka -20.
-\frac{7}{6}-\left(-\frac{20}{3}\right)
Ka taea te hautanga \frac{-20}{3} te tuhi anō ko -\frac{20}{3} mā te tango i te tohu tōraro.
-\frac{7}{6}+\frac{20}{3}
Ko te tauaro o -\frac{20}{3} ko \frac{20}{3}.
-\frac{7}{6}+\frac{40}{6}
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri -\frac{7}{6} me \frac{20}{3} ki te hautau me te tautūnga 6.
\frac{-7+40}{6}
Tā te mea he rite te tauraro o -\frac{7}{6} me \frac{40}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{33}{6}
Tāpirihia te -7 ki te 40, ka 33.
\frac{11}{2}
Whakahekea te hautanga \frac{33}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}