Aromātai
\frac{39}{8}=4.875
Tauwehe
\frac{3 \cdot 13}{2 ^ {3}} = 4\frac{7}{8} = 4.875
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\left(2\times 3+1\right)\times 6}{3\left(1\times 6+1\right)}\times \frac{3\times 4+1}{4}}{\frac{1\times 3+1}{3}}
Whakawehe \frac{2\times 3+1}{3} ki te \frac{1\times 6+1}{6} mā te whakarea \frac{2\times 3+1}{3} ki te tau huripoki o \frac{1\times 6+1}{6}.
\frac{\frac{2\left(1+2\times 3\right)}{1+6}\times \frac{3\times 4+1}{4}}{\frac{1\times 3+1}{3}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\frac{2\left(1+6\right)}{1+6}\times \frac{3\times 4+1}{4}}{\frac{1\times 3+1}{3}}
Whakareatia te 2 ki te 3, ka 6.
\frac{\frac{2\times 7}{1+6}\times \frac{3\times 4+1}{4}}{\frac{1\times 3+1}{3}}
Tāpirihia te 1 ki te 6, ka 7.
\frac{\frac{14}{1+6}\times \frac{3\times 4+1}{4}}{\frac{1\times 3+1}{3}}
Whakareatia te 2 ki te 7, ka 14.
\frac{\frac{14}{7}\times \frac{3\times 4+1}{4}}{\frac{1\times 3+1}{3}}
Tāpirihia te 1 ki te 6, ka 7.
\frac{2\times \frac{3\times 4+1}{4}}{\frac{1\times 3+1}{3}}
Whakawehea te 14 ki te 7, kia riro ko 2.
\frac{2\times \frac{12+1}{4}}{\frac{1\times 3+1}{3}}
Whakareatia te 3 ki te 4, ka 12.
\frac{2\times \frac{13}{4}}{\frac{1\times 3+1}{3}}
Tāpirihia te 12 ki te 1, ka 13.
\frac{\frac{2\times 13}{4}}{\frac{1\times 3+1}{3}}
Tuhia te 2\times \frac{13}{4} hei hautanga kotahi.
\frac{\frac{26}{4}}{\frac{1\times 3+1}{3}}
Whakareatia te 2 ki te 13, ka 26.
\frac{\frac{13}{2}}{\frac{1\times 3+1}{3}}
Whakahekea te hautanga \frac{26}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{13}{2}}{\frac{3+1}{3}}
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{13}{2}}{\frac{4}{3}}
Tāpirihia te 3 ki te 1, ka 4.
\frac{13}{2}\times \frac{3}{4}
Whakawehe \frac{13}{2} ki te \frac{4}{3} mā te whakarea \frac{13}{2} ki te tau huripoki o \frac{4}{3}.
\frac{13\times 3}{2\times 4}
Me whakarea te \frac{13}{2} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{39}{8}
Mahia ngā whakarea i roto i te hautanga \frac{13\times 3}{2\times 4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}