Aromātai
\frac{83}{15}\approx 5.533333333
Tauwehe
\frac{83}{3 \cdot 5} = 5\frac{8}{15} = 5.533333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{6+1}{3}+\frac{\frac{3\times 5+3}{5}}{\frac{1\times 8+1}{8}}
Whakareatia te 2 ki te 3, ka 6.
\frac{7}{3}+\frac{\frac{3\times 5+3}{5}}{\frac{1\times 8+1}{8}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{7}{3}+\frac{\left(3\times 5+3\right)\times 8}{5\left(1\times 8+1\right)}
Whakawehe \frac{3\times 5+3}{5} ki te \frac{1\times 8+1}{8} mā te whakarea \frac{3\times 5+3}{5} ki te tau huripoki o \frac{1\times 8+1}{8}.
\frac{7}{3}+\frac{\left(15+3\right)\times 8}{5\left(1\times 8+1\right)}
Whakareatia te 3 ki te 5, ka 15.
\frac{7}{3}+\frac{18\times 8}{5\left(1\times 8+1\right)}
Tāpirihia te 15 ki te 3, ka 18.
\frac{7}{3}+\frac{144}{5\left(1\times 8+1\right)}
Whakareatia te 18 ki te 8, ka 144.
\frac{7}{3}+\frac{144}{5\left(8+1\right)}
Whakareatia te 1 ki te 8, ka 8.
\frac{7}{3}+\frac{144}{5\times 9}
Tāpirihia te 8 ki te 1, ka 9.
\frac{7}{3}+\frac{144}{45}
Whakareatia te 5 ki te 9, ka 45.
\frac{7}{3}+\frac{16}{5}
Whakahekea te hautanga \frac{144}{45} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{35}{15}+\frac{48}{15}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{7}{3} me \frac{16}{5} ki te hautau me te tautūnga 15.
\frac{35+48}{15}
Tā te mea he rite te tauraro o \frac{35}{15} me \frac{48}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{83}{15}
Tāpirihia te 35 ki te 48, ka 83.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}