Aromātai
4.195
Tauwehe
\frac{839}{2 ^ {3} \cdot 5 ^ {2}} = 4\frac{39}{200} = 4.195
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
2 \frac { 1 } { 2 } \times ( 3.25 - 4 ) - 18.21 \div ( - 3 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{4+1}{2}\left(3.25-4\right)-\frac{18.21}{-3}
Whakareatia te 2 ki te 2, ka 4.
\frac{5}{2}\left(3.25-4\right)-\frac{18.21}{-3}
Tāpirihia te 4 ki te 1, ka 5.
\frac{5}{2}\left(-0.75\right)-\frac{18.21}{-3}
Tangohia te 4 i te 3.25, ka -0.75.
\frac{5}{2}\left(-\frac{3}{4}\right)-\frac{18.21}{-3}
Me tahuri ki tau ā-ira -0.75 ki te hautau -\frac{75}{100}. Whakahekea te hautanga -\frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{5\left(-3\right)}{2\times 4}-\frac{18.21}{-3}
Me whakarea te \frac{5}{2} ki te -\frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-15}{8}-\frac{18.21}{-3}
Mahia ngā whakarea i roto i te hautanga \frac{5\left(-3\right)}{2\times 4}.
-\frac{15}{8}-\frac{18.21}{-3}
Ka taea te hautanga \frac{-15}{8} te tuhi anō ko -\frac{15}{8} mā te tango i te tohu tōraro.
-\frac{15}{8}-\frac{1821}{-300}
Whakarohaina te \frac{18.21}{-3} mā te whakarea i te taurunga me te tauraro ki te 100.
-\frac{15}{8}-\left(-\frac{607}{100}\right)
Whakahekea te hautanga \frac{1821}{-300} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{15}{8}+\frac{607}{100}
Ko te tauaro o -\frac{607}{100} ko \frac{607}{100}.
-\frac{375}{200}+\frac{1214}{200}
Ko te maha noa iti rawa atu o 8 me 100 ko 200. Me tahuri -\frac{15}{8} me \frac{607}{100} ki te hautau me te tautūnga 200.
\frac{-375+1214}{200}
Tā te mea he rite te tauraro o -\frac{375}{200} me \frac{1214}{200}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{839}{200}
Tāpirihia te -375 ki te 1214, ka 839.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}