Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{26+1}{13}\left(\frac{1}{5}-\frac{1}{12}\right)-\frac{7}{\frac{3\times 2+1}{2}}
Whakareatia te 2 ki te 13, ka 26.
\frac{27}{13}\left(\frac{1}{5}-\frac{1}{12}\right)-\frac{7}{\frac{3\times 2+1}{2}}
Tāpirihia te 26 ki te 1, ka 27.
\frac{27}{13}\left(\frac{12}{60}-\frac{5}{60}\right)-\frac{7}{\frac{3\times 2+1}{2}}
Ko te maha noa iti rawa atu o 5 me 12 ko 60. Me tahuri \frac{1}{5} me \frac{1}{12} ki te hautau me te tautūnga 60.
\frac{27}{13}\times \frac{12-5}{60}-\frac{7}{\frac{3\times 2+1}{2}}
Tā te mea he rite te tauraro o \frac{12}{60} me \frac{5}{60}, me tango rāua mā te tango i ō raua taurunga.
\frac{27}{13}\times \frac{7}{60}-\frac{7}{\frac{3\times 2+1}{2}}
Tangohia te 5 i te 12, ka 7.
\frac{27\times 7}{13\times 60}-\frac{7}{\frac{3\times 2+1}{2}}
Me whakarea te \frac{27}{13} ki te \frac{7}{60} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{189}{780}-\frac{7}{\frac{3\times 2+1}{2}}
Mahia ngā whakarea i roto i te hautanga \frac{27\times 7}{13\times 60}.
\frac{63}{260}-\frac{7}{\frac{3\times 2+1}{2}}
Whakahekea te hautanga \frac{189}{780} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{63}{260}-\frac{7\times 2}{3\times 2+1}
Whakawehe 7 ki te \frac{3\times 2+1}{2} mā te whakarea 7 ki te tau huripoki o \frac{3\times 2+1}{2}.
\frac{63}{260}-\frac{14}{3\times 2+1}
Whakareatia te 7 ki te 2, ka 14.
\frac{63}{260}-\frac{14}{6+1}
Whakareatia te 3 ki te 2, ka 6.
\frac{63}{260}-\frac{14}{7}
Tāpirihia te 6 ki te 1, ka 7.
\frac{63}{260}-2
Whakawehea te 14 ki te 7, kia riro ko 2.
\frac{63}{260}-\frac{520}{260}
Me tahuri te 2 ki te hautau \frac{520}{260}.
\frac{63-520}{260}
Tā te mea he rite te tauraro o \frac{63}{260} me \frac{520}{260}, me tango rāua mā te tango i ō raua taurunga.
-\frac{457}{260}
Tangohia te 520 i te 63, ka -457.