Aromātai
\frac{5}{6}\approx 0.833333333
Tauwehe
\frac{5}{2 \cdot 3} = 0.8333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2\times 12+1\right)\times 8}{12\left(5\times 8+5\right)}\times \frac{2\times 4+1}{4}
Whakawehe \frac{2\times 12+1}{12} ki te \frac{5\times 8+5}{8} mā te whakarea \frac{2\times 12+1}{12} ki te tau huripoki o \frac{5\times 8+5}{8}.
\frac{2\left(1+2\times 12\right)}{3\left(5+5\times 8\right)}\times \frac{2\times 4+1}{4}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{2\left(1+24\right)}{3\left(5+5\times 8\right)}\times \frac{2\times 4+1}{4}
Whakareatia te 2 ki te 12, ka 24.
\frac{2\times 25}{3\left(5+5\times 8\right)}\times \frac{2\times 4+1}{4}
Tāpirihia te 1 ki te 24, ka 25.
\frac{50}{3\left(5+5\times 8\right)}\times \frac{2\times 4+1}{4}
Whakareatia te 2 ki te 25, ka 50.
\frac{50}{3\left(5+40\right)}\times \frac{2\times 4+1}{4}
Whakareatia te 5 ki te 8, ka 40.
\frac{50}{3\times 45}\times \frac{2\times 4+1}{4}
Tāpirihia te 5 ki te 40, ka 45.
\frac{50}{135}\times \frac{2\times 4+1}{4}
Whakareatia te 3 ki te 45, ka 135.
\frac{10}{27}\times \frac{2\times 4+1}{4}
Whakahekea te hautanga \frac{50}{135} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{10}{27}\times \frac{8+1}{4}
Whakareatia te 2 ki te 4, ka 8.
\frac{10}{27}\times \frac{9}{4}
Tāpirihia te 8 ki te 1, ka 9.
\frac{10\times 9}{27\times 4}
Me whakarea te \frac{10}{27} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{90}{108}
Mahia ngā whakarea i roto i te hautanga \frac{10\times 9}{27\times 4}.
\frac{5}{6}
Whakahekea te hautanga \frac{90}{108} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}