Whakaoti mō x
x = \frac{45}{2} = 22\frac{1}{2} = 22.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-6\times 45=3\times 15-4\times 3x
Whakareatia te 2 ki te 1, ka 2.
2x-270=3\times 15-4\times 3x
Whakareatia te 6 ki te 45, ka 270.
2x-270=45-4\times 3x
Whakareatia te 3 ki te 15, ka 45.
2x-270=45-12x
Whakareatia te 4 ki te 3, ka 12.
2x-270+12x=45
Me tāpiri te 12x ki ngā taha e rua.
14x-270=45
Pahekotia te 2x me 12x, ka 14x.
14x=45+270
Me tāpiri te 270 ki ngā taha e rua.
14x=315
Tāpirihia te 45 ki te 270, ka 315.
x=\frac{315}{14}
Whakawehea ngā taha e rua ki te 14.
x=\frac{45}{2}
Whakahekea te hautanga \frac{315}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}