Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2a^{2}-18+a=15
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a^{2}-9.
2a^{2}-18+a-15=0
Tangohia te 15 mai i ngā taha e rua.
2a^{2}-33+a=0
Tangohia te 15 i te -18, ka -33.
2a^{2}+a-33=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-1±\sqrt{1^{2}-4\times 2\left(-33\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 1 mō b, me -33 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±\sqrt{1-4\times 2\left(-33\right)}}{2\times 2}
Pūrua 1.
a=\frac{-1±\sqrt{1-8\left(-33\right)}}{2\times 2}
Whakareatia -4 ki te 2.
a=\frac{-1±\sqrt{1+264}}{2\times 2}
Whakareatia -8 ki te -33.
a=\frac{-1±\sqrt{265}}{2\times 2}
Tāpiri 1 ki te 264.
a=\frac{-1±\sqrt{265}}{4}
Whakareatia 2 ki te 2.
a=\frac{\sqrt{265}-1}{4}
Nā, me whakaoti te whārite a=\frac{-1±\sqrt{265}}{4} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{265}.
a=\frac{-\sqrt{265}-1}{4}
Nā, me whakaoti te whārite a=\frac{-1±\sqrt{265}}{4} ina he tango te ±. Tango \sqrt{265} mai i -1.
a=\frac{\sqrt{265}-1}{4} a=\frac{-\sqrt{265}-1}{4}
Kua oti te whārite te whakatau.
2a^{2}-18+a=15
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te a^{2}-9.
2a^{2}+a=15+18
Me tāpiri te 18 ki ngā taha e rua.
2a^{2}+a=33
Tāpirihia te 15 ki te 18, ka 33.
\frac{2a^{2}+a}{2}=\frac{33}{2}
Whakawehea ngā taha e rua ki te 2.
a^{2}+\frac{1}{2}a=\frac{33}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
a^{2}+\frac{1}{2}a+\left(\frac{1}{4}\right)^{2}=\frac{33}{2}+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+\frac{1}{2}a+\frac{1}{16}=\frac{33}{2}+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}+\frac{1}{2}a+\frac{1}{16}=\frac{265}{16}
Tāpiri \frac{33}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a+\frac{1}{4}\right)^{2}=\frac{265}{16}
Tauwehea a^{2}+\frac{1}{2}a+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{4}\right)^{2}}=\sqrt{\frac{265}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{1}{4}=\frac{\sqrt{265}}{4} a+\frac{1}{4}=-\frac{\sqrt{265}}{4}
Whakarūnātia.
a=\frac{\sqrt{265}-1}{4} a=\frac{-\sqrt{265}-1}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.