Whakaoti mō x
x=\frac{\sqrt{34}}{20}-\frac{7}{5}\approx -1.108452405
x=-\frac{\sqrt{34}}{20}-\frac{7}{5}\approx -1.691547595
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(3x+4\right)\times 2\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x+1\right).
4\left(3x+4\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakareatia te 2 ki te 2, ka 4.
\left(12x+16\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3x+4.
12x^{2}+28x+16-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x+16 ki te x+1 ka whakakotahi i ngā kupu rite.
12x^{2}+28x+16-4\left(5x+2\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakareatia te -2 ki te 2, ka -4.
12x^{2}+28x+16+\left(-20x-8\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 5x+2.
12x^{2}+28x+16-20x^{2}-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -20x-8 ki te x+1 ka whakakotahi i ngā kupu rite.
-8x^{2}+28x+16-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Pahekotia te 12x^{2} me -20x^{2}, ka -8x^{2}.
-8x^{2}+16-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Pahekotia te 28x me -28x, ka 0.
-8x^{2}+8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Tangohia te 8 i te 16, ka 8.
-8x^{2}+8=3+8\left(4x+10\right)\left(x+1\right)
Whakareatia te 4 ki te 2, ka 8.
-8x^{2}+8=3+\left(32x+80\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 4x+10.
-8x^{2}+8=3+32x^{2}+112x+80
Whakamahia te āhuatanga tuaritanga hei whakarea te 32x+80 ki te x+1 ka whakakotahi i ngā kupu rite.
-8x^{2}+8=83+32x^{2}+112x
Tāpirihia te 3 ki te 80, ka 83.
-8x^{2}+8-83=32x^{2}+112x
Tangohia te 83 mai i ngā taha e rua.
-8x^{2}-75=32x^{2}+112x
Tangohia te 83 i te 8, ka -75.
-8x^{2}-75-32x^{2}=112x
Tangohia te 32x^{2} mai i ngā taha e rua.
-40x^{2}-75=112x
Pahekotia te -8x^{2} me -32x^{2}, ka -40x^{2}.
-40x^{2}-75-112x=0
Tangohia te 112x mai i ngā taha e rua.
-40x^{2}-112x-75=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\left(-40\right)\left(-75\right)}}{2\left(-40\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -40 mō a, -112 mō b, me -75 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-112\right)±\sqrt{12544-4\left(-40\right)\left(-75\right)}}{2\left(-40\right)}
Pūrua -112.
x=\frac{-\left(-112\right)±\sqrt{12544+160\left(-75\right)}}{2\left(-40\right)}
Whakareatia -4 ki te -40.
x=\frac{-\left(-112\right)±\sqrt{12544-12000}}{2\left(-40\right)}
Whakareatia 160 ki te -75.
x=\frac{-\left(-112\right)±\sqrt{544}}{2\left(-40\right)}
Tāpiri 12544 ki te -12000.
x=\frac{-\left(-112\right)±4\sqrt{34}}{2\left(-40\right)}
Tuhia te pūtakerua o te 544.
x=\frac{112±4\sqrt{34}}{2\left(-40\right)}
Ko te tauaro o -112 ko 112.
x=\frac{112±4\sqrt{34}}{-80}
Whakareatia 2 ki te -40.
x=\frac{4\sqrt{34}+112}{-80}
Nā, me whakaoti te whārite x=\frac{112±4\sqrt{34}}{-80} ina he tāpiri te ±. Tāpiri 112 ki te 4\sqrt{34}.
x=-\frac{\sqrt{34}}{20}-\frac{7}{5}
Whakawehe 112+4\sqrt{34} ki te -80.
x=\frac{112-4\sqrt{34}}{-80}
Nā, me whakaoti te whārite x=\frac{112±4\sqrt{34}}{-80} ina he tango te ±. Tango 4\sqrt{34} mai i 112.
x=\frac{\sqrt{34}}{20}-\frac{7}{5}
Whakawehe 112-4\sqrt{34} ki te -80.
x=-\frac{\sqrt{34}}{20}-\frac{7}{5} x=\frac{\sqrt{34}}{20}-\frac{7}{5}
Kua oti te whārite te whakatau.
2\left(3x+4\right)\times 2\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x+1\right).
4\left(3x+4\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakareatia te 2 ki te 2, ka 4.
\left(12x+16\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3x+4.
12x^{2}+28x+16-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x+16 ki te x+1 ka whakakotahi i ngā kupu rite.
12x^{2}+28x+16-4\left(5x+2\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakareatia te -2 ki te 2, ka -4.
12x^{2}+28x+16+\left(-20x-8\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 5x+2.
12x^{2}+28x+16-20x^{2}-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -20x-8 ki te x+1 ka whakakotahi i ngā kupu rite.
-8x^{2}+28x+16-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Pahekotia te 12x^{2} me -20x^{2}, ka -8x^{2}.
-8x^{2}+16-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Pahekotia te 28x me -28x, ka 0.
-8x^{2}+8=3+4\left(4x+10\right)\times 2\left(x+1\right)
Tangohia te 8 i te 16, ka 8.
-8x^{2}+8=3+8\left(4x+10\right)\left(x+1\right)
Whakareatia te 4 ki te 2, ka 8.
-8x^{2}+8=3+\left(32x+80\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 4x+10.
-8x^{2}+8=3+32x^{2}+112x+80
Whakamahia te āhuatanga tuaritanga hei whakarea te 32x+80 ki te x+1 ka whakakotahi i ngā kupu rite.
-8x^{2}+8=83+32x^{2}+112x
Tāpirihia te 3 ki te 80, ka 83.
-8x^{2}+8-32x^{2}=83+112x
Tangohia te 32x^{2} mai i ngā taha e rua.
-40x^{2}+8=83+112x
Pahekotia te -8x^{2} me -32x^{2}, ka -40x^{2}.
-40x^{2}+8-112x=83
Tangohia te 112x mai i ngā taha e rua.
-40x^{2}-112x=83-8
Tangohia te 8 mai i ngā taha e rua.
-40x^{2}-112x=75
Tangohia te 8 i te 83, ka 75.
\frac{-40x^{2}-112x}{-40}=\frac{75}{-40}
Whakawehea ngā taha e rua ki te -40.
x^{2}+\left(-\frac{112}{-40}\right)x=\frac{75}{-40}
Mā te whakawehe ki te -40 ka wetekia te whakareanga ki te -40.
x^{2}+\frac{14}{5}x=\frac{75}{-40}
Whakahekea te hautanga \frac{-112}{-40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x^{2}+\frac{14}{5}x=-\frac{15}{8}
Whakahekea te hautanga \frac{75}{-40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}+\frac{14}{5}x+\left(\frac{7}{5}\right)^{2}=-\frac{15}{8}+\left(\frac{7}{5}\right)^{2}
Whakawehea te \frac{14}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{5}. Nā, tāpiria te pūrua o te \frac{7}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{14}{5}x+\frac{49}{25}=-\frac{15}{8}+\frac{49}{25}
Pūruatia \frac{7}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{14}{5}x+\frac{49}{25}=\frac{17}{200}
Tāpiri -\frac{15}{8} ki te \frac{49}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{5}\right)^{2}=\frac{17}{200}
Tauwehea x^{2}+\frac{14}{5}x+\frac{49}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{5}\right)^{2}}=\sqrt{\frac{17}{200}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{5}=\frac{\sqrt{34}}{20} x+\frac{7}{5}=-\frac{\sqrt{34}}{20}
Whakarūnātia.
x=\frac{\sqrt{34}}{20}-\frac{7}{5} x=-\frac{\sqrt{34}}{20}-\frac{7}{5}
Me tango \frac{7}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}