Whakaoti mō x
x=\frac{5}{9}-\frac{16}{45y}
y\neq 0
Whakaoti mō y
y=-\frac{16}{5\left(9x-5\right)}
x\neq \frac{5}{9}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(-1.6\right)=9xy+y\left(-5\right)
Whakareatia ngā taha e rua o te whārite ki te y.
-3.2=9xy+y\left(-5\right)
Whakareatia te 2 ki te -1.6, ka -3.2.
9xy+y\left(-5\right)=-3.2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9xy=-3.2-y\left(-5\right)
Tangohia te y\left(-5\right) mai i ngā taha e rua.
9xy=-3.2+5y
Whakareatia te -1 ki te -5, ka 5.
9yx=5y-3.2
He hanga arowhānui tō te whārite.
\frac{9yx}{9y}=\frac{5y-3.2}{9y}
Whakawehea ngā taha e rua ki te 9y.
x=\frac{5y-3.2}{9y}
Mā te whakawehe ki te 9y ka wetekia te whakareanga ki te 9y.
x=\frac{5}{9}-\frac{16}{45y}
Whakawehe 5y-3.2 ki te 9y.
2\left(-1.6\right)=9xy+y\left(-5\right)
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
-3.2=9xy+y\left(-5\right)
Whakareatia te 2 ki te -1.6, ka -3.2.
9xy+y\left(-5\right)=-3.2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(9x-5\right)y=-3.2
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(9x-5\right)y}{9x-5}=-\frac{3.2}{9x-5}
Whakawehea ngā taha e rua ki te -5+9x.
y=-\frac{3.2}{9x-5}
Mā te whakawehe ki te -5+9x ka wetekia te whakareanga ki te -5+9x.
y=-\frac{16}{5\left(9x-5\right)}
Whakawehe -3.2 ki te -5+9x.
y=-\frac{16}{5\left(9x-5\right)}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}