Aromātai
10
Tauwehe
2\times 5
Pātaitai
Arithmetic
2 \cdot \sqrt[ 3 ] { - 125 } + 4 \cdot \sqrt[ 5 ] { 32 } - 6 \cdot \sqrt[ 3 ] { - 8 }
Tohaina
Kua tāruatia ki te papatopenga
2\left(-5\right)+4\sqrt[5]{32}-6\sqrt[3]{-8}
Tātaitia te \sqrt[3]{-125} kia tae ki -5.
-10+4\sqrt[5]{32}-6\sqrt[3]{-8}
Whakareatia te 2 ki te -5, ka -10.
-10+4\times 2-6\sqrt[3]{-8}
Tātaitia te \sqrt[5]{32} kia tae ki 2.
-10+8-6\sqrt[3]{-8}
Whakareatia te 4 ki te 2, ka 8.
-2-6\sqrt[3]{-8}
Tāpirihia te -10 ki te 8, ka -2.
-2-6\left(-2\right)
Tātaitia te \sqrt[3]{-8} kia tae ki -2.
-2+12
Whakareatia te -6 ki te -2, ka 12.
10
Tāpirihia te -2 ki te 12, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}